×

A scheme for the game \(p\)-Laplacian and its application to image inpainting. (English) Zbl 07764025

Summary: We propose a new numerical scheme for the game \(p\)-Laplacian, based on a semi-Lagrangian approximation. We focus on the 2D version of the game \(p\)-Laplacian, with the aim to apply the new scheme in the context of image processing. Specifically, we want to solve the so-called inpainting problem, which consists in reconstructing one or more missing parts of an image using information taken from the known part. The numerical tests show the reliability of the proposed method and the advantages of taking a \(p>1\) in terms of execution time and accuracy.

MSC:

91A15 Stochastic games, stochastic differential games
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] Ali Qureshi, M.; Deriche, M.; Beghdadi, A.; Amin, A., A critical survey of state-of-the-art image inpainting quality assessment metrics, J. Vis. Commun. Image Represent., 49, 177-191 (2017)
[2] Aubert, G.; Kornprobst, P., Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (2010), Springer
[3] Barron, E. N.; Evans, L. C.; Jensen, R., The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Am. Math. Soc., 360, 1, 77-101 (2008) · Zbl 1125.35019
[4] Barles, G., Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications, vol. 17 (1994), Springer-Verlag: Springer-Verlag Paris · Zbl 0819.35002
[5] Bertalmío, M.; Caselles, V.; Haro, G.; Sapiro, G., PDE-based image and surface inpainting, (Paragios, N.; Chen, Y.; Faugeras, O., Handbook of Mathematical Models in Computer Vision (2006), Springer: Springer Boston, MA)
[6] Bertalmío, M.; Sapiro, G.; Caselles, V.; Ballester, C., Image inpainting, (Akeley, Kurt, Proceeding of the SIGGRAPH (2000), ACM Press, ACM SIGGRAPH, Addison Wesley Longman), 417-424
[7] Bonaventura, L.; Carlini, E.; Calzola, E.; Ferretti, R., Second order fully semi-Lagrangian discretizations of advection-diffusion-reaction systems, J. Sci. Comput., 88, 23, 1-29 (2021) · Zbl 1505.65242
[8] Boscarino, S.; Filbet, F.; Russo, G., High order semi-implicit schemes for time dependent partial differential equations, J. Sci. Comput., 68, 3, 975-1001 (2016) · Zbl 1353.65075
[9] Calzola, E.; Carlini, E.; Xavier, D.; Silva, F. J., A semi-Lagrangian scheme for Hamilton-Jacobi-Bellman equations with oblique derivatives boundary conditions, Numer. Math., 153, 1, 49-84 (2023) · Zbl 1505.49022
[10] Camilli, F.; Falcone, M., An approximation scheme for the optimal control of diffusion processes, Math. Model. Numer. Anal., 29, 1, 97-122 (1995) · Zbl 0822.65044
[11] Carlini, E.; Falcone, M.; Ferretti, R., Convergence of a large time step scheme for mean curvature motion, Interfaces Free Bound., 12, 409-441 (2011) · Zbl 1416.65304
[12] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015
[13] Crandall, M. G.; Lions, P. L., Convergent difference schemes for nonlinear parabolic equations and mean curvature motion, Numer. Math., 75, 17-41 (1996) · Zbl 0874.65066
[14] Del Teso, F.; Lindgren, E., A finite difference method for the variational p-Laplacian, J. Sci. Comput., 90, 67, 1-31 (2022) · Zbl 1486.65224
[15] Elmoataz, A.; Desquesnes, X.; Toutain, M., On the game p-Laplacian on weighted graphs with applications in image processing and data clustering, Eur. J. Appl. Math., 28, 6, 922-948 (2017) · Zbl 1390.91039
[16] Falcone, M.; Finzi Vita, S.; Giorgi, T.; Smits, R. G., A semi-Lagrangian scheme for the game p-Laplacian via p-averaging, Appl. Numer. Math., 73, 63-80 (2013) · Zbl 1320.65151
[17] Falcone, M.; Ferretti, R., Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations (2013), SIAM · Zbl 1007.65060
[18] Ferretti, R., A technique for high-order treatment of diffusion terms in semi-Lagrangian schemes, Commun. Comput. Phys., 8, 2, 445-470 (2010) · Zbl 1364.65214
[19] Galić, I.; Weickert, J.; Welk, M.; Bruhn, A.; Belyaev, A.; Seidel, H.-P., Image compression with anisotropic diffusion, J. Math. Imaging Vis., 31, 2-3, 255-269 (2008) · Zbl 1448.94012
[20] Giga, Y., Surface Evolution Equations – a Level Set Method, Hokkaido University Technical Report Series in Mathematics, vol. 71 (2002)
[21] Halim, A.; Rathish Kumar, B. V., An anisotropic PDE model for image inpainting, Comput. Math. Appl., 79, 9, 2701-2721 (2020) · Zbl 1524.94017
[22] Lewicka, M., A Course on Tug-of-War Games with Random Noise: Introduction and Basic Constructions (2020), Springer: Springer Cham · Zbl 1452.91002
[23] Lindqvist, P., Notes on the Stationary p-Laplace Equation, Springer Briefs in Mathematics (2019), Springer: Springer Cham · Zbl 1421.35002
[24] Juutinen, P.; Lindqvist, P.; Manfredi, J., On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33, 699-717 (2001) · Zbl 0997.35022
[25] Peres, Y.; Sheffield, S., Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math. J., 145, 91-120 (2008) · Zbl 1206.35112
[26] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D. B., Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002
[27] Schönlieb, C.-B., Partial Differential Equation Methods for Image Inpainting (2015), Cambridge University Press · Zbl 1335.94002
[28] Zhang, H. Y.; Peng, Q. C.; Wu, Y. D., Wavelet inpainting based on p-Laplace operator, Acta Autom. Sin., 33, 5, 546-549 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.