×

Asymptotic mean value formulas for parabolic nonlinear equations. (English) Zbl 1503.35102

Summary: In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge-Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games.

MSC:

35K96 Parabolic Monge-Ampère equations
35D40 Viscosity solutions to PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs

References:

[1] H. Aimar, I. G´omez and B. Iaffei, Parabolic mean values and maximal estimates for gradients of temperatures,J. Funct. Anal.255(2008), no. 8, 1939-1956. MR 2462582. · Zbl 1171.35020
[2] A. R. Arroyo Garc´ıa,Nonlinear Mean Value Properties Related to thep-Laplacian, Ph.D. thesis, Universitat Aut‘onoma de Barcelona, 2017. https://www.tdx.cat/handle/10803/405316.
[3] P. Blanc, C. Esteve and J. D. Rossi, The evolution problem associated with eigenvalues of the Hessian,J. Lond. Math. Soc. (2)102(2020), no. 3, 1293-1317. MR 4186128. · Zbl 1462.35136
[4] P. Blanc, F. Charro, J. D. Rossi and J. J. Manfredi, A nonlinear mean value property for the Monge-Amp‘ere operator,J. Convex Anal.28(2021), no. 2, 353-386. MR 4245872. · Zbl 1466.35235
[5] P. Blanc and J. D. Rossi,Game Theory and Partial Differential Equations, Berlin, Boston: De Gruyter, 2019. · Zbl 1430.91001
[6] P. Blanc and J. D. Rossi, Games for eigenvalues of the Hessian and concave/convex envelopes, J. Math. Pures Appl.(9)127(2019), 192-215. MR 3960142. · Zbl 1423.35118
[7] W. Blaschke, Ein Mittelwertsatz und eine kennzeichnende Eigenschaft des logarithmischen Potentials,Ber. Verh. S¨achs. Akad. Wiss. Leipzig68(1916), 3-7. JFM 46.0742.01. · JFM 46.0742.01
[8] A. Bonfiglioli and E. Lanconelli, Subharmonic functions in sub-Riemannian settings,J. Eur. Math. Soc. (JEMS)15(2013), no. 2, 387-441. MR 3017042. · Zbl 1270.31002
[9] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Amp‘ere equation,Comm. Pure Appl. Math.37(1984), no. 3, 369-402. MR 0739925. · Zbl 0598.35047
[10] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,Acta Math.155(1985), no. 3-4, 261-301. MR 0806416. · Zbl 0654.35031
[11] D. Chopp, L. C. Evans and H. Ishii, Waiting time effects for Gauss curvature flows,Indiana Univ. Math. J.48(1999), no. 1, 311-334. MR 1722203. · Zbl 0995.53050
[12] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations,Bull. Amer. Math. Soc. (N.S.)27(1992), no. 1, 1-67. MR 1118699. · Zbl 0755.35015
[13] P. Daskalopoulos and O. Savin,C1,αregularity of solutions to parabolic Monge-Amp´ere equations,Amer. J. Math.134(2012), no. 4, 1051-1087. MR 2956257. · Zbl 1258.35133
[14] F. del Teso and E. Lindgren, A mean value formula for the variationalp-Laplacian,NoDEA Nonlinear Differential Equations Appl.28(2021), no. 3, Paper No. 27, 33 pp. MR 4241463. · Zbl 1467.35190
[15] E. B. Fabes and N. Garofalo, Mean value properties of solutions to parabolic equations with variable coefficients,J. Math. Anal. Appl.121(1987), no. 2, 305-316. MR 0872228. · Zbl 0627.35041
[16] F. Ferrari, Q. Liu and J. Manfredi, On the characterization ofp-harmonic functions on the Heisenberg group by mean value properties,Discrete Contin. Dyn. Syst.34(2014), no. 7, 2779-2793. MR 3177660. · Zbl 1293.35350
[17] W. J. Firey, Shapes of worn stones,Mathematika21(1974), 1-11. MR 0362045. · Zbl 0311.52003
[18] W. Fulks, A mean value theorem for the heat equation,Proc. Amer. Math. Soc.17(1966), 6-11. MR 0192200. · Zbl 0152.10503
[19] C. E. Guti´errez and Q. Huang,W2,pestimates for the parabolic Monge-Amp‘ere equation, Arch. Ration. Mech. Anal.159(2001), no. 2, 137-177. MR 1857377. · Zbl 0992.35020
[20] C. E. Guti´errez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Amp‘ere equation,Indiana Univ. Math. J.47(1998), no. 4, 1459-1480. MR 1687122. · Zbl 0926.35053
[21] R. S. Hamilton, Worn stones with flat sides, inA Tribute to Ilya Bakelman (College Station, TX, 1993), 69-78, Discourses Math. Appl., 3, Texas A & M Univ., College Station, TX, 1994. MR 1423370. · Zbl 0882.52002
[22] A. E. Kogoj, E. Lanconelli and G. Tralli, An inverse mean value property for evolution equations,Adv. Differential Equations19(2014), no. 7-8, 783-804. MR 3252902. · Zbl 1297.35014
[23] ¨U. Kuran, On the mean-value property of harmonic functions,Bull. London Math. Soc.4 (1972), 311-312. MR 0320348. · Zbl 0257.31006
[24] E. Le Gruyer and J. C. Archer, Harmonious extensions,SIAM J. Math. Anal.29(1998), no. 1, 279-292. MR 1617186. · Zbl 0915.46002
[25] E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE ∆∞(u) = 0,NoDEA Nonlinear Differential Equations Appl.14(2007), no. 1-2, 29-55. MR 2346452. · Zbl 1154.35055
[26] P. Lindqvist and J. Manfredi, On the mean value property for thep-Laplace equation in the plane,Proc. Amer. Math. Soc.144(2016), no. 1, 143-149. MR 3415584. · Zbl 1327.35124
[27] W. Littman, G. Stampacchia and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)17(1963), 43-77. MR 0161019. · Zbl 0116.30302
[28] J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization forp-harmonic functions,Proc. Amer. Math. Soc.138(2010), no. 3, 881-889. MR 2566554. · Zbl 1187.35115
[29] J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,SIAM J. Math. Anal. 42(2010), no. 5, 2058-2081. MR 2684311. · Zbl 1231.35107
[30] J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of p-harmonious functions,Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)11(2012), no. 2, 215- 241. MR 3011990. · Zbl 1252.91014
[31] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc.22(2009), no. 1, 167-210. MR 2449057. · Zbl 1206.91002
[32] Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of thep-Laplacian, Duke Math. J.145(2008), no. 1, 91-120. MR 2451291. · Zbl 1206.35112
[33] I. Privaloff, Sur les fonctions harmoniques,Mat. Sb.32(1925), no. 3, 464-471. JFM 51.0363.02. · JFM 62.0556.05
[34] N. Suzuki and N. A. Watson, A characterization of heat balls by a mean value property for temperatures,Proc. Amer. Math. Soc.129(2001), no. 9, 2709-2713. MR 1838795. · Zbl 0969.31006
[35] L. Tang, Regularity results on the parabolic Monge-Amp‘ere equation withVMOtype data, J. Differential Equations255(2013), no. 7, 1646-1656. MR 3072666. · Zbl 1284.35246
[36] K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature,Comm. Pure Appl. Math.38(1985), no. 6, 867-882. MR 0812353. · Zbl 0612.53005
[37] B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Amp‘ere equation, J. Differential Equations259(2015), no. 1, 344-370. MR 3335929. · Zbl 1338.35271
[38] R. H. Wang and G. L. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial-boundary value problems to parabolic Monge-Amp‘ere equation,Northeast. Math. J.8(1992), no. 4, 417-446. MR 1210195. · Zbl 0783.35028
[39] R. H. Wang and G. L. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Amp‘ere type equation,J. Partial Differential Equations6 (1993), no. 3, 237-254. MR 1234574. · Zbl 0811.35053
[40] N. A. Watson, A theory of subtemperatures in several variables,Proc. London Math. Soc. (3)26(1973), 385-417. MR 0315289. · Zbl 0253.35045
[41] J. Xiong and J. Bao, On J¨orgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Amp‘ere equations,J. Differential Equations250(2011), no. 1, 367-385. MR 2737847. · Zbl 1207.35185
[42] W. Zhang, J. Bao and B. Wang, An extension of J¨orgens-Calabi-Pogorelov theorem to parabolic Monge-Amp‘ere equation,Calc. Var. Partial Differential Equations57(2018), no. 3, Paper No. 90, 36 pp. MR 3800271 · Zbl 1391.35250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.