×

Asymptotics for quasilinear obstacle problems in bad domains. (English) Zbl 1418.35195

Summary: We study two obstacle problems involving the \(p\)-Laplace operator in domains with \(n\)-th pre-fractal and fractal boundary. We perform asymptotic analysis for \(p \rightarrow \infty \) and \(n \rightarrow \infty \).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J70 Degenerate elliptic equations
35B40 Asymptotic behavior of solutions to PDEs

References:

[1] G. Aronsson; M. G. Crandall; P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41, 439-505 (2004) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[2] J. W. Barrett; W. B. Liu, Finite element approximation of the p-Laplacian, Math. Comp., 61, 523-537 (1993) · Zbl 0791.65084 · doi:10.2307/2153239
[3] T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as \(\begin{document} p \to + \infty \end{document}\) of \(\begin{document} {\Delta_p}{u_p} = f \end{document}\) and related extremal problems, Some Topics in Nonlinear PDEs (Turin, 1989), Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 15-68 (1991).
[4] F. Camilli; R. Capitanelli; M. A. Vivaldi, Absolutely minimizing Lipschitz extensions and infinity harmonic functions on the Sierpinski gasket, Nonlinear Anal., 163, 71-85 (2017) · Zbl 1375.31011 · doi:10.1016/j.na.2017.07.005
[5] R. Capitanelli, Asymptotics for mixed Dirichlet-Robin problems in irregular domains, J. Math. Anal. Appl., 362, 450-459 (2010) · Zbl 1179.35106 · doi:10.1016/j.jmaa.2009.09.042
[6] R. Capitanelli; M. A. Vivaldi, Dynamical Quasi-Filling Fractal Layers, SIAM J. Math. Anal., 48, 3931-3961 (2016) · Zbl 1353.28003 · doi:10.1137/15M1043893
[7] R. Capitanelli; M. A. Vivaldi, FEM for quasilinear obstacle problems in bad domains, ESAIM Math. Model. Numer. Anal., 51, 2465-2485 (2017) · Zbl 1381.28007 · doi:10.1051/m2an/2017033
[8] J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. Ⅰ. Elliptic equations. Research Notes in Mathematics. 106. Pitman, Boston, MA, 1985. · Zbl 0595.35100
[9] L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999), ⅷ+66 pp. · Zbl 0920.49004
[10] D. S. Grebenkov, M. Filoche and B. Sapoval, Mathematical basis for a general theory of Laplacian transport towards irregular interfaces, Phys. Rev. E, 73 (2006), 021103, 9pp. · Zbl 1144.82314
[11] J. E. Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J, 30, 713-747 (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[12] R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123, 51-74 (1993) · Zbl 0789.35008 · doi:10.1007/BF00386368
[13] J. M. Mazón; J. D. Rossi; J. Toledo, Mass transport problems for the Euclidean distance obtained as limits of p-Laplacian type problems with obstacles, Journal of Differential Equations, 256, 3208-3244 (2014) · Zbl 1284.49051 · doi:10.1016/j.jde.2014.01.039
[14] E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40, 837-842 (1934) · Zbl 0010.34606 · doi:10.1090/S0002-9904-1934-05978-0
[15] U. Mosco, Convergence of convex sets and solutions of variational inequalities, Adv. Math., 3, 510-585 (1969) · Zbl 0192.49101 · doi:10.1016/0001-8708(69)90009-7
[16] U. Mosco; M. A. Vivaldi, Layered fractal fibers and potentials, J. Math. Pures Appl. (9), 103, 1198-1227 (2015) · Zbl 1319.35137 · doi:10.1016/j.matpur.2014.10.010
[17] Y. Peres; O. Schramm; S. Sheffield; D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[18] H. L. Royden, Real Analysis, Third edition. Macmillan Publishing Company, New York, 1988. · Zbl 0704.26006
[19] G. M. Troianiello, Elliptic Differential Equations and Obstacle Problems, Springer, 1987. · Zbl 0655.35002
[20] C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.