×

Infinity Laplacian equation with strong absorptions. (English) Zbl 1344.35034

Let \(\Delta_{\infty} u = (Du)^T D^2u Du\) denote the infinity Laplacian. In the work under review, the authors consider for a bounded domain \(\Omega \subset \mathbb{R}^n\) (\(n \geq 2\)) and continuous non-negative boundary data \(g \in C(\partial \Omega)\) the Dirichlet problem \[ \begin{cases} \Delta_{\infty} u - \lambda (u^+)^{\gamma}= 0 & \qquad \text{in } \Omega, \\ u = g &\qquad \text{on } \partial \Omega, \end{cases} \] where \(\lambda > 0\) and \(\gamma \in [0,3)\) are constants. First, the authors establish existence and uniqueness of viscosity solutions for the problem. In the main part, it is then shown that the viscosity solution is pointwise of class \(C^{\frac{4}{3-\gamma}}\) along the boundary of the set \(\partial \{ u > 0 \}\).

MSC:

35J60 Nonlinear elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
35D40 Viscosity solutions to PDEs
35K57 Reaction-diffusion equations

References:

[1] Aronsson, G., Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6, 551-561 (1967) · Zbl 0158.05001
[2] Aronsson, G., On the partial differential equation \(u_{x^2} u_{x x} + 2 u_x u_y u_{x y} + u_{y^2} u_y y = 0\), Ark. Mat., 7, 395-425 (1968) · Zbl 0162.42201
[3] Aronsson, G.; Crandall, M.; Juutinen, P., A tour of the theory of absolute minimizing functions, Bull. Amer. Math. Soc., 41, 4, 439-505 (2004) · Zbl 1150.35047
[4] Bjorland, C.; Caffarelli, L.; Figalli, A., Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math., 65, 3, 337-380 (2012) · Zbl 1235.35278
[5] Caselles, V.; Morel, J.; Sbert, C., An axiomatic approach to image interpolation, IEEE Trans. Image Process., 7, 3, 376-386 (1998) · Zbl 0993.94504
[6] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67 (1992) · Zbl 0755.35015
[7] dos Prazeres, D.; Teixeira, E., Cavity problems in discontinuous media, Calc. Var. Partial Differential Equations (2015), in press
[8] Evans, L. C.; Savin, O., \(C^{1, \alpha}\) regularity for infinity harmonic functions in two dimensions, Calc. Var. Partial Differential Equations, 32, 325-347 (2008) · Zbl 1151.35096
[9] Evans, L. C.; Smart, C. K., Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differential Equations, 42, 289-299 (2011) · Zbl 1251.49034
[10] Jensen, R., Uniqueness of Lipschitz extensions minimizing the sup-norm of the gradient, Arch. Ration. Mech. Anal., 123, 51-74 (1993) · Zbl 0789.35008
[11] Koskela, P.; Rohde, S., Hausdorff dimension and mean porosity, Math. Ann., 309, 4, 593-609 (1997) · Zbl 0890.30013
[12] Lindgren, E., On the regularity of solutions of the inhomogeneous infinity Laplace equation, Proc. Amer. Math. Soc., 142, 1, 277-288 (2014) · Zbl 1287.35025
[13] Lu, G.; Wang, P., Inhomogeneous infinity Laplace equation, Adv. Math., 217, 4, 1838-1868 (2008) · Zbl 1152.35042
[14] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22, 1, 167-210 (2009) · Zbl 1206.91002
[15] Rossi, J.; Teixeira, E., A limiting free boundary problem ruled by Aronsson’s equation, Trans. Amer. Math. Soc., 364, 703-719 (2012) · Zbl 1236.35210
[16] Rossi, J.; Teixeira, E.; Urbano, J. M., Optimal regularity at the free boundary for the infinity obstacle problem, Interfaces Free Bound., 7, 381-398 (2015) · Zbl 1439.35580
[17] Savin, O., \(C^1\) regularity for infinity harmonic functions in two dimensions, Arch. Ration. Mech. Anal., 176, 351-361 (2005) · Zbl 1112.35070
[18] Teixeira, E., Sharp regularity for general Poisson equations with borderline sources, J. Math. Pures Appl. (9), 99, 2, 150-164 (2013) · Zbl 1263.35071
[19] Teixeira, E., Regularity for quasilinear equations on degenerate singular sets, Math. Ann., 358, 1, 241-256 (2014) · Zbl 1286.35119
[20] Teixeira, E., Regularity for the fully nonlinear dead-core problem, Math. Ann. (2015), in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.