×

Tug-of-war, market manipulation, and option pricing. (English) Zbl 1541.91247

Summary: We develop an option pricing model based on a tug-of-war game. This two-player zero-sum stochastic differential game is formulated in the context of a multidimensional financial market. The issuer and the holder try to manipulate asset price processes in order to minimize and maximize the expected discounted reward. We prove that the game has a value and that the value function is the unique viscosity solution to a terminal value problem for a parabolic partial differential equation involving the nonlinear and completely degenerate infinity Laplace operator.
{© 2014 Wiley Periodicals, Inc.}

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
91A15 Stochastic games, stochastic differential games
91A05 2-person games
91A80 Applications of game theory

References:

[1] Alfonsi, A., A.Fruth, and A.Schied (2010): Optimal Execution Strategies in Limit Order Books with General Shape Functions, Quant. Financ. 10(2), 143-157. · Zbl 1185.91199
[2] Atar, R., and A.Budhiraja (2010): A Stochastic Differential Game for the Inhomogeneous ∞‐Laplace Equation, Ann. Probab. 38(2), 498-531. · Zbl 1192.91025
[3] Atar, R., and A.Budhiraja (2011): On Near Optimal Trajectories for a Game Associated with the ∞‐Laplacian, Probab. Theory Rel. Fields151(3-4), 509-528. · Zbl 1233.91026
[4] Avellaneda, M., ALevy, and A.Paras (1995): Pricing and Hedging Derivative Securities in Markets with Uncertain Volatilities, Appl. Math. Financ. 2, 73-88. · Zbl 1466.91323
[5] Avellaneda, M., and A.Paras (1996): Managing the Volatility Risk of Portfolios of Derivative Securities: The Lagrangian Uncertain Volatility Model, Appl. Math. Financ. 3, 31-52. · Zbl 1097.91514
[6] Back, K., H.Cao, and G.Willard (2000): Imperfect Competition Among Informed Traders, J. Financ. 55, 2117-2155.
[7] Banerjee, A., and N.Garofalo (2012): Gradient Bounds and Monotonicity of the Energy for Some Nonlinear Singular Diffusion Equations, preprint arXiv:1202.5068.
[8] Bernhard, P., J. CEngwerda, B.Roorda, J. M.Schumacher, V.Kolokoltsov, P.Saint‐Pierre, and J.‐P.Aubin (2012): The Interval Market Model in Mathematical Finance: Game‐Theoretic Methods, Basel: Birkhäuser.
[9] Black, F., and M.Scholes (1973): The Pricing of Options and Corporate Liabilities, J. Pol. Econ. 81, 637-659. · Zbl 1092.91524
[10] Brunnermeier, M., and L.Pedersen (2005): Predatory Trading, J. Financ. 60(4), 1825-1863.
[11] Buckdahn, R., and J.Li (2008): Stochastic Differential Games and Viscosity Solutions of Hamilton‐Jacobi‐Bellman‐Isaacs Equations, SIAM J. Control Optim. 47(1), 444-475. · Zbl 1157.93040
[12] Buckdahn, R., P.Cardaliaguet, and C.Rainer (2004): Nash Equilibrium Payoffs for Nonzerosum Stochastic Differential Games, SIAM J. Control Optim. 43(2), 624-642. · Zbl 1101.91010
[13] Carlin, B. I., M. S.Lobo, and S.Viswanathan (2007): Episodic Liquidity Crises: Cooperative and Predatory Trading, J. Financ. 65(5), 2235-2274.
[14] Cetin, U., R.Jarrow, and P.Protter (2004): Liquidity Risk and Arbitrage Pricing Theory, Financ. Stoch. 8(3), 311-341. · Zbl 1064.60083
[15] Chau, M., and D.Vayanos (2008): Strong‐Form Efficiency with Monopolistic Insiders, Rev. Financ. Stud. 21, 2275-2306.
[16] Chen, Y. G., Y.Giga, and S.Goto (1991): Uniqueness and Existence of Viscosity Solutions of Generalized Mean Curvature Flow Equations, J. Differ. Geom. 33(3), 749-786. · Zbl 0696.35087
[17] Crandall, M. G., H.Ishii, and P.‐L.Lions (1992): User’s Guide to Viscosity Solutions of Second Order Partial Differential Equations, Bull. Am. Math. Soc. 27(1), 1-67. · Zbl 0755.35015
[18] Does, K. (2011): An Evolution Equation Involving the Normalized p‐Laplacian, Commun. Pure Appl. Anal. 10(1), 361-396. · Zbl 1229.35132
[19] Evans, L. C., and R. F.Gariepy (1992): Measure Theory and Fine Properties of Functions, Boca Raton, FL: CRC Press. · Zbl 0804.28001
[20] Evans, L. C., and J.Spruck (1991): Motion of Level Sets by Mean Curvature I, J. Differ. Geom. 33(3), 635-681. · Zbl 0726.53029
[21] Fleming, W. H., and P. E.Souganidis (1989): On the Existence of Value Functions of Two‐Player, Zero‐Sum Stochastic Differential Games, Indiana Univ. Math. J. 38(2), 293-314. · Zbl 0686.90049
[22] Foster, F. D., and S.Viswanathan (1996): Strategic Trading When Agents Forecast the Forecasts of Others, J. Finance51, 1437-1478.
[23] Friedman, A. (1972): Stochastic Differential Games, J. Differ. Equat. 11, 79-108. · Zbl 0208.39402
[24] Gallmeyer, M., and D.Seppi (2000): Derivative Security Induced Price Manipulation, Working Paper, Carnegie Mellon University.
[25] Giga, Y. (2006): Surface Evolution Equations. A Level Set Approach, Basel: Birkhäuser. · Zbl 1096.53039
[26] Giga, Y., S.Goto, H.Ishii, and M.‐H.Sato (1991): Comparison Principle and Convexity Preserving Properties for Singular Degenerate Parabolic Equations on Unbounded Domains, Indiana Univ. Math. J. 40(2), 443-470. · Zbl 0836.35009
[27] Hamadene, S., and J. P.Lepeltier (1995): Zero‐Sum Stochastic Differential Games and Backward Equations, Syst. Control Lett. 24, 259-263. · Zbl 0877.93125
[28] Ishii, H. (1995): On the Equivalence of Two Notions of Weak Solutions, Viscosity Solutions and Distribution Solutions, Funkcial. Ekvac. 38(1), 101-120. · Zbl 0833.35053
[29] Jarrow, R. (1994): Derivative Security Markets, Market Manipulation, and Option Pricing Theory, J. Financ. Quant. Anal. 29(2), 241-261.
[30] Julin, V., and P.Juutinen (2012): A New Proof for the Equivalence of Weak and Viscosity Solutions for the p‐Laplace Equation, Comm. Partial Differ. Equat. 37(5), 934-946. · Zbl 1260.35069
[31] Juutinen, P., and B.Kawohl (2006): On the Evolution Governed by the Infinity Laplacian, Math. Ann. 335(4), 819-851. · Zbl 1110.35037
[32] Kawohl, B., J. J.Manfredi, and M.Parviainen (2012): Solutions of Nonlinear PDEs in the Sense of Averages, J. Math. Pures Appl. 97(2), 173-188. · Zbl 1236.35083
[33] Kolokoltsov, V. N. (2013): Game Theoretic Analysis of Incomplete Markets: Emergence of Probabilities, Nonlinear and Fractional Black‐Scholes Equations, Risk Decision Anal. 4, 131-161. · Zbl 1409.91239
[34] Krylov, N. V. (1976): Sequences of Convex Functions and Estimates of the Maximum of the Solution of a Parabolic Equation, Siberian Math. J. 17(2), 226-236. · Zbl 0362.35038
[35] Krylov, N. V. (2009): Controlled Diffusion Processes, Berlin: Springer‐Verlag. · Zbl 1171.93004
[36] Kumar, P., and D.Seppi (1992): Futures Manipulation with Cash Settlement, J. Financ. 47(4), 1485-1502.
[37] Kyle, A. S. (1985): Continuous Auctions and Insider Trading, Econometrica53(6), 1315-1335. · Zbl 0571.90010
[38] Lindqvist, P. (2012): Regularity of Supersolutions, Lecture Notes Math. 2045, 73-131. · Zbl 1252.35002
[39] Lyons, T. (1995): Uncertain Volatility and the Risk‐Free Synthesis of Derivatives, Appl. Math. Financ. 2, 117-133. · Zbl 1466.91347
[40] Manfredi, J. J., M.Parviainen, and J. D.Rossi (2010): An Asymptotic Mean Value Characterization for a Class of Nonlinear Parabolic Equations Related to Tug‐of‐War Games, SIAM J. Math. Anal. 42(5), 2058-2081. · Zbl 1231.35107
[41] Manfredi, J. J., M.Parviainen, and J. D.Rossi (2012): On the Definition and Properties of p‐Harmonious Functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11(2), 215-241. · Zbl 1252.91014
[42] McEneaney, W. M. (1997): A Robust Control Framework for Option Pricing, Math. Oper. Res. 22, 201-221. · Zbl 0871.90010
[43] Merton, R. C. (1973): Theory of Rational Option Pricing, Bell J. Econ. Manag. Sci. 4, 141-183. · Zbl 1257.91043
[44] Nisio, M. (1988): Stochastic Differential Games and Viscosity Solutions of Isaacs Equations, Nagoya Math. J. 110, 163-184. · Zbl 0850.93741
[45] Peres, Y., O.Schramm, S.Sheffield, and D.Wilson (2009): Tug‐of‐War and the Infinity Laplacian, J. Am. Math. Soc. 22, 167-210. · Zbl 1206.91002
[46] Peres, Y., and S.Sheffield (2008): Tug‐of‐War with Noise: A Game Theoretic View of the p‐Laplacian, Duke Math. J. 145(1), 91-120. · Zbl 1206.35112
[47] Pirrong, C. (2001): Manipulation of Cash‐Settled Futures Contracts, J. Bus. 74(2): 221-244.
[48] Rogers, L. C. G., and S.Singh (2010): The Cost of Illiquidity and Its Effects on Hedging, Math. Financ. 20(4), 597-615. · Zbl 1232.91635
[49] Schied, A., and T.Schöneborn (2007): Liquidation in the Face of Adversity: Stealth vs. Sunshine Trading, Predatory Trading vs. Liquidity Provision. Working Paper.
[50] Swiech, A. (1996): Another Approach to the Existence of Value Functions of Stochastic Differential Games, J. Math. Anal. Appl. 204(3), 884-897. · Zbl 0870.90107
[51] Ziegler, A. (2004): A Game Theory Analysis of Options. Corporate Finance and Financial Intermediation in Continuous Time, Berlin: Springer‐Verlag. · Zbl 1103.91042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.