×

Nonlinear mean-value formulas on fractal sets. (English) Zbl 1433.28022

Summary: In this paper we study the solutions to nonlinear mean-value formulas on fractal sets. We focus on the mean-value problem \(\frac{1}{2} \max_{q \in V_{m, p}} \{f(q) \} + \frac{1}{2} \min_{q \in V_{m, p}} \{f(q) \} - f(p) = 0\) in the Sierpiński gasket with prescribed values \(f(p_1), f(p_2)\) and \(f(p_3)\) at the three vertices of the first triangle. For this problem we show existence and uniqueness of a continuous solution and analyze some properties like the validity of a comparison principle, Lipschitz continuity of solutions (regularity) and continuous dependence of the solution with respect to the prescribed values at the three vertices of the first triangle.

MSC:

28A80 Fractals
Full Text: DOI

References:

[1] Manfredi, J. J., Parviainen, M. and Rossi, J. D., An asymptotic mean value characterization for \(p\)-harmonic functions, Proc. Am. Math. Soc.138 (2010) 881-889. · Zbl 1187.35115
[2] Hartenstine, D. and Rudd, M., Asymptotic statistical characterizations of \(p\)-harmonic functions of two variables, Rocky Mt. J. Math.41(2) (2011) 493-504. · Zbl 1222.31001
[3] Hartenstine, D. and Rudd, M., Statistical functional equations and \(p\)-harmonious functions, Adv. Nonlinear Stud.13(1) (2013) 191-207. · Zbl 1277.35188
[4] Manfredi, J. J., Parviainen, M. and Rossi, J. D., On the definition and properties of \(p\)-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci.11(2) (2012) 215-241. · Zbl 1252.91014
[5] Peres, Y. and Sheffield, S., Tug-of-war with noise: A game theoretic view of the \(p\)-Laplacian, Duke Math. J.145(1) (2008) 91-120. · Zbl 1206.35112
[6] Rudd, M. and Van Dyke, H. A., Median values, 1-harmonic functions, and functions of least gradient, Commun. Pure Appl. Anal.12(2) (2013) 711-719. · Zbl 1271.31012
[7] Oberman, A., Finite difference methods for the infinity Laplace and \(p\)-Laplace equations, J. Comput. Appl. Math.254 (2013) 65-80. · Zbl 1290.65098
[8] Oberman, A., A convergent difference scheme for the infinity Laplacian: Construction of absolutely minimizing Lipschitz extensions, Math. Comput.74(251) (2005) 1217-1230. · Zbl 1094.65110
[9] Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian, J. Am. Math. Soc.22(1) (2009) 167-210 [see also Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, in Selected Works of Oded Schramm, Selected works in Probability and Statisitcs, Vols. 1 and 2 (Springer, New York, 2011), pp. 595-638]. · Zbl 1206.91002
[10] Rossi, J. D., Tug-of-war games and PDEs, Proc. R. Soc. Edinb. A141(2) (2011) 319-369. · Zbl 1242.35091
[11] Alvarez, V., Rodríguez, J. M. and Yakubovich, D. V., Estimates for nonlinear harmonic “measures” on trees, Michigan Math. J.49(1) (2001) 47-64. · Zbl 1006.31006
[12] Del Pezzo, L. M., Mosquera, C. A. and Rossi, J. D., The unique continuation property for a nonlinear equation on trees, J. Lond. Math. Soc.89 (2014) 364-382. · Zbl 1295.35370
[13] Del Pezzo, L. M., Mosquera, C. A. and Rossi, J. D., Estimates for nonlinear harmonic measures on trees, Bull. Braz. Math. Soc.45(3) (2014) 405-432. · Zbl 1305.28001
[14] Kaufman, R., Llorente, J. G. and Wu, J.-M., Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. Math.28(2) (2003) 279-302. · Zbl 1033.31004
[15] Kaufman, R. and Wu, J.-M., Fatou theorem of \(p\)-harmonic functions on trees, Ann. Probab.28(3) (2000) 1138-1148. · Zbl 1038.31007
[16] Manfredi, J. J., Oberman, A. and Sviridov, A., Nonlinear elliptic partial differential equations and \(p\)-harmonic functions on graphs, Diff. Integral Eqs.28(1-2) (2015) 79-102. · Zbl 1349.35382
[17] A. P. Sviridov, Elliptic equations in graphs via stochastic games, Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA (2011).
[18] Sviridov, A. P., \(p\)-harmonious functions with drift on graphs via games, Electron. J. Diff. Eqs.2011 (2011) 114-1-114-11. · Zbl 1229.35304
[19] Strichartz, R. S., Differential Equations on Fractals: A Tutorial (Princeton University Press, 2006). · Zbl 1190.35001
[20] Li, P.-H., Ryder, N., Strichartz, R. S. and Ugurcan, B., Extensions and their minimizations on the Sierpiński gasket, Potential Anal.41(4) (2014) 1167-1201. · Zbl 1306.28010
[21] Owen, J. and Strichartz, R. S., Boundary value problems for harmonic functions on a domain in the Sierpinski gasket, Indiana Univ. Math. J.61(1) (2012) 319-335. · Zbl 1272.28010
[22] Barlow, M. T., Diffusion on fractals, in Lectures on Probability Theory and Statistics, , Vol. 1690 (Springer, Berlin, 1998), pp. 1-114.
[23] Qiu, H. and Strichartz, R. S., Mean value properties of harmonic functions on Sierpiński gasket type fractals, J. Fourier Anal. Appl.19(5) (2013) 943-966. · Zbl 1306.28012
[24] Camilli, F., Capitanelli, R. and Vivaldi, M. A., Absolutely minimizing Lipschitz extensions and infinity harmonic functions on the Sierpiński gasket, Nonlinear Anal.163 (2017) 71-85. · Zbl 1375.31011
[25] Camilli, F., Capitanelli, R. and Marchi, C., Eikonal equations on the Sierpiński gasket, Math. Ann.364(3-4) (2016) 1167-1188. · Zbl 1439.35501
[26] Kigami, J., Analysis on Fractals (Cambridge University Press, Cambridge, 2001). · Zbl 0998.28004
[27] Maitra, A. P. and Sudderth, W. D., Discrete Gambling and Stochastic Games, , Vol. 32 (Springer-Verlag, 1996). · Zbl 0864.90148
[28] Wolff, T. H., Gap series constructions for the \(p\)-Laplacian, J. Anal. Math.102 (2007) 371-394. · Zbl 1213.35218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.