×

Principal eigenvalue of a very badly degenerate operator and applications. (English) Zbl 1132.35066

The author considers the eigenvalue problem \[ -\Delta_{\infty}u=\lambda u\;{\text{in}} \;\Omega,\qquad u=0\;{\text{on}} \;\partial\Omega\,, \] where \(\Omega\) is a bounded open subset of \(\mathbb R^{n}\), \(u\) is a function of \(\Omega\) to \(\mathbb R\), \(\lambda\) plays the role of an eigenvalue, and
\[ \Delta_{\infty}u\equiv \biggl(D^{2}u \frac{Du}{| Du| }\biggr) \frac{Du}{| Du| }. \]
It is proved that the least eigenvalue is positive and is delivered by the formula
\[ \lambda_{1}=\sup\{\lambda:\exists v>0\text{ in }\Omega,\text{ such that } -\Delta_{\infty}v\geq\lambda v\}. \]
The author also proves that \(\lambda_{1}\) admits a positive eigenfunction and that it can be characterized as the supremum of the values \(\lambda\) for which \(\Delta_{\infty}+\lambda I\) satisfies the maximum principle. Then some applications are presented to the analysis of the problem
\[ -\Delta_{\infty}\varphi= \lambda\varphi +f \quad \text{in }\Omega, \]
with respect to unknown \(\varphi\) for some positive function \(f\) of \(\Omega\) to \(\mathbb R\).

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J60 Nonlinear elliptic equations
35J70 Degenerate elliptic equations
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
Full Text: DOI

References:

[1] Aronsson, G., Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6, 551-561 (1967) · Zbl 0158.05001
[2] Aronsson, G.; Crandall, M. G.; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41, 4, 439-505 (2004) · Zbl 1150.35047
[3] E.N. Barron, L.C. Evans, R.R. Jensen, The infinity Laplacian, Aronsson’s equation and their generalizations, preprint; E.N. Barron, L.C. Evans, R.R. Jensen, The infinity Laplacian, Aronsson’s equation and their generalizations, preprint · Zbl 1125.35019
[4] Berestycki, H.; Nirenberg, L.; Varadhan, S. R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47, 1, 47-92 (1994) · Zbl 0806.35129
[5] Birindelli, I.; Demengel, F., Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse Math. (6), 13, 2, 261-287 (2004) · Zbl 1129.35369
[6] Birindelli, I.; Demengel, F., First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differential Equations, 11, 1, 91-119 (2006) · Zbl 1132.35427
[7] Birindelli, I.; Demengel, F., Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators, preprint, available at · Zbl 1132.35032
[8] Busca, J.; Esteban, M. J.; Quaas, A., Nonlinear eigenvalues and bifurcation problems for Pucci’s operators, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 2, 187-206 (2005) · Zbl 1205.35087
[9] Caselles, V.; Morel, J.-M.; Sbert, C., An axiomatic approach to image interpolation, IEEE Trans. Image Process., 7, 3, 376-386 (1998) · Zbl 0993.94504
[10] T. Champion, L. De Pascale, Asymptotic behavior of nonlinear eigenvalue problems involving \(p\)-Laplacian type operators, Proc. Roy. Soc. Edinburgh Sect. A, in press; T. Champion, L. De Pascale, Asymptotic behavior of nonlinear eigenvalue problems involving \(p\)-Laplacian type operators, Proc. Roy. Soc. Edinburgh Sect. A, in press · Zbl 1134.35013
[11] Crandall, M. G.; Ishii, H.; Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27, 1, 1-67 (1992) · Zbl 0755.35015
[12] Felmer, P. L.; Quaas, A., Positive radial solutions to a ‘semilinear’ equation involving the Pucci’s operator, J. Differential Equations, 199, 2, 376-393 (2004) · Zbl 1070.34032
[13] Fukagai, N.; Ito, M.; Narukawa, K., Limit as \(p \to \infty\) of \(p\)-Laplace eigenvalue problems and \(L^\infty \)-inequality of the Poincaré type, Differential Integral Equations, 12, 2, 183-206 (1999) · Zbl 1064.35512
[14] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Classics Math. (2001), Springer-Verlag: Springer-Verlag Berlin · Zbl 0691.35001
[15] H. Ishii, Y. Yoshimura, Demi-eigenvalues for uniformly elliptic Isaacs operators, preprint; H. Ishii, Y. Yoshimura, Demi-eigenvalues for uniformly elliptic Isaacs operators, preprint
[16] Jensen, R., Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal., 123, 1, 51-74 (1993) · Zbl 0789.35008
[17] Juutinen, P.; Kawohl, B., On the evolution governed by the infinity Laplacian, Math. Ann., 335, 819-851 (2006) · Zbl 1110.35037
[18] Juutinen, P.; Lindqvist, P., On the higher eigenvalues for the ∞-eigenvalue problem, Calc. Var. Partial Differential Equations, 23, 2, 169-192 (2005) · Zbl 1080.35057
[19] Juutinen, P.; Lindqvist, P.; Manfredi, J. J., The ∞-eigenvalue problem, Arch. Ration. Mech. Anal., 148, 2, 89-105 (1999) · Zbl 0947.35104
[20] Lindqvist, P.; Manfredi, J. J., The Harnack inequality for ∞-harmonic functions, Electron. J. Differential Equations, 04 (1995) · Zbl 0818.35033
[21] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D. B., Tug-of-war and the infinity Laplacian, preprint, available at · Zbl 1206.91002
[22] Quaas, A., Existence of a positive solution to a “semilinear” equation involving Pucci’s operator in a convex domain, Differential Integral Equations, 17, 5-6, 481-494 (2004) · Zbl 1174.35373
[23] Quaas, A.; Sirakov, B., On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators, C. R. Math. Acad. Sci. Paris, 342, 2, 115-118 (2006) · Zbl 1134.35048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.