×

Adaptive constraint control for nonlinear multi-agent systems with undirected graphs. (English) Zbl 1508.93186

Summary: This paper investigates the problem of adaptive distributed consensus control for stochastic multi-agent systems (MASs) with full state constraints. By utilizing adaptive backstepping control technique and barrier Lyapunov function (BLF), an adaptive distributed consensus constraint control method is proposed. The developed control method can ensure that all signals of the controlled system are semi-globally uniformly ultimately bounded (SGUUB) in probability, and outputs of the follower agents keep consensus with the output of leader. In addition, system states are not transgressed their constrained sets. Finally, simulation results are provided to illustrate the feasibility of the developed control algorithm and theorem.

MSC:

93C40 Adaptive control/observation systems
93D50 Consensus
93A16 Multi-agent systems
93C10 Nonlinear systems in control theory

References:

[1] Z, Decentralized robust adaptive control for the multiagent system consensus problem using neural networks, IEEE T. Syst. Man Cy. Part B, 39, 636-647 (2009) · doi:10.1109/TSMCB.2008.2007810
[2] W, Leader-following consensus of second-order multi-agents with multiple time-varying delays, Automatica, 46, 1994-1999 (2010) · Zbl 1205.93056 · doi:10.1016/j.automatica.2010.08.003
[3] Y, Distributed observers design for leader-following control of multi-agent networks, Automatica, 44, 846-850 (2008) · Zbl 1283.93019 · doi:10.1016/j.automatica.2007.07.004
[4] W, Quantized consensus of second-order continuous-time multi-agent systems with a directed topology via sampled data, Automatica, 49, 2236-2242 (2013) · Zbl 1364.93011 · doi:10.1016/j.automatica.2013.04.002
[5] J, Adaptive consensus tracking of high-order nonlinear multi-agent systems with directed communication graphs, Int. J. Control, Autom Syst., 12, 919-929 (2014) · doi:10.1007/s12555-013-0325-0
[6] C, Leader-following consensus for high-order nonlinear stochastic multiagent systems, IEEE T. Cybernetics, 47, 1882-1891 (2017)
[7] W, Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances, Automatica, 47, 133-142 (2017) · Zbl 1355.93022
[8] W, Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults, Automatica, 111, 108667 (2020) · Zbl 1430.93198 · doi:10.1016/j.automatica.2019.108667
[9] K, Barrier Lyapunov functions for the control of output constrained nonlinear systems, Automatica, 45, 918-927 (2009) · Zbl 1162.93346 · doi:10.1016/j.automatica.2008.11.017
[10] Y, Neural network control-based adaptive learning design for nonlinear systems with full-state constraints, IEEE T. Neur. Net. Lear. Syst., 27, 1562-1571 (2016) · doi:10.1109/TNNLS.2015.2508926
[11] Y, Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints, Automatica, 87, 83-93 (2018) · Zbl 1378.93137 · doi:10.1016/j.automatica.2017.07.028
[12] K, Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints, IEEE T. Fuzzy Syst., 27, 1587-1601 (2019) · doi:10.1109/TFUZZ.2018.2883374
[13] Y. Li, Y. Liu, S. Tong, Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints, <i>IEEE T. Neur. Net. Lear. Syst.</i>, 2021. DOI: <a href=“http://dx.doi.org/10.1109/TNNLS.2021.3051030.” target=“_blank”>10.1109/TNNLS.2021.3051030.</a>
[14] J, Finite-time adaptive fuzzy control for nonlinear systems with full state constraints, IEEE T. Syst. Man Cy. Syst., 49, 1541-1548 (2019) · doi:10.1109/TSMC.2018.2854770
[15] H, Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation, IEEE T. Automat. Contr., 66, 1306-1313 (2021) · Zbl 1536.93707 · doi:10.1109/TAC.2020.2990173
[16] L, Adaptive practical fast finite-time consensus protocols for high-order nonlinear multi-agent systems with full state constraints, IEEE Access, 9, 81554-81563 (2021) · doi:10.1109/ACCESS.2021.3085843
[17] D, Practical fixed-time adaptive consensus control for a class of multi-agent systems with full state constraints and input delay, Neurocomputing, 446, 156-164 (2021) · doi:10.1016/j.neucom.2021.03.032
[18] K. Li, Y. Li, Fuzzy adaptive optimal consensus fault-tolerant control for stochastic nonlinear multi-agent systems, <i>IEEE T. Fuzzy Syst.</i>, 2021. DOI: <a href=“http://dx.doi.org/10.1109/TFUZZ.2021.3094716.” target=“_blank”>10.1109/TFUZZ.2021.3094716.</a>
[19] F, Observer-based adaptive fuzzy output constrained control for uncertain nonlinear multi-agent systems, Inform. Sciences, 467, 446-463 (2018) · Zbl 1448.93299 · doi:10.1016/j.ins.2018.08.025
[20] L, Event-triggered adaptive consensus for fuzzy output-constrained multi-agent systems with observers, J. Franklin I., 357, 82-105 (2020) · Zbl 1429.93344 · doi:10.1016/j.jfranklin.2019.09.033
[21] Y. Liu, H. Zhang, J. Sun, Y. Wang, Adaptive fuzzy containment control for multi-agent systems with state constraints using unified transformation functions, <i>IEEE T. Fuzzy Syst.</i>, 2020. DOI: <a href=“http://dx.doi.org/10.1109/TFUZZ.2020.3033376.” target=“_blank”>10.1109/TFUZZ.2020.3033376.</a>
[22] Y, Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints, Appl. Math. Comput., 326, 16-32 (2018) · Zbl 1426.93168
[23] D, Distributed learning consensus for heterogenous high-order nonlinear multi-agent systems with output constraints, Automatica, 97, 64-72 (2018) · Zbl 1406.93031 · doi:10.1016/j.automatica.2018.07.030
[24] H, Adaptive output-feedback tracking of stochastic nonlinear systems, IEEE T. Automat. Contr., 51, 355-360 (2006) · Zbl 1366.93620 · doi:10.1109/TAC.2005.863501
[25] D, State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Method. Appl. Sci., 41, 6968-6983 (2018) · Zbl 1404.34083 · doi:10.1002/mma.5209
[26] D, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal.-Hybrid Syst., 32, 294-305 (2019) · Zbl 1425.93149 · doi:10.1016/j.nahs.2019.01.006
[27] J, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Anal.-Model., 23, 904-920 (2018) · Zbl 1416.93147 · doi:10.15388/NA.2018.6.6
[28] S. Shi, H. Min, S. Ding, Observer-based adaptive scheme for fixed-time frequency estimation of biased sinusoidal signals, <i>Automatica</i>, <b>127</b> (2021) 109559. · Zbl 1461.93264
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.