×

Old and new categorical invariants of manifolds. (English) Zbl 1311.57029

The Lusternik-Schnirelmann category of a space \(X,\) \(\text{cat}(X),\) is the least nonnegative integer \(n\) such that \(X\) admits a cover constituted by \(n\) open subsets that are contractible in \(X.\) The motivation of this numerical homotopy invariant is that, for any compact differentiable manifold \(M\), \(\text{cat}(M)\) provides a lower bound of the number of critical points of any differentiable map \(f:M\rightarrow \mathbb{R}.\) A useful generalization of \(\text{cat}(-)\) is given by M. Clapp and D. Puppe [Trans. Am. Math. Soc. 298, 603–620 (1986; Zbl 0618.55003)]. Namely, given a nonempty class of spaces \(\mathcal{A},\) a subset \(W\) of a space \(X\) is said to be \(\mathcal{A}\)-contractible (in \(X\)) whenever the inclusion \(W\subseteq X\) factorizes, up to homotopy, through some space \(K\in \mathcal{A}.\) Then the \(\mathcal{A}\)-category of \(X,\) \(\text{cat}_{\mathcal{A}}(X),\) is the minimal number of open \(\mathcal{A}\)-categorical subsets that are needed to cover \(X\) (or infinity if such a cover does not exist). As Clapp and Puppe showed, when \(M\) is a smooth manifold, \(\text{cat}_{\mathcal{A}}(M)\) gives information about the topology of the critical sets of \(M.\) A particular case of Clapp-Puppe’s notion is when \(\mathcal{A}=\{K\}\) consists of a unique space \(K.\) In this case \(\text{cat}_{\mathcal{A}}(X)\) is simply denoted as \(\text{cat}_K(X)\).
The paper under review is basically a survey of the research on the relationship between \(\text{cat}_K(M)\) for certain cases of the space \(K\) (such as the circle, the 2-sphere, the projective plane, a wedge of circles, a wedge of 2-spheres or a wedge of projective planes) and the geometric topology of the manifold \(M\), particularly focused on the 3-dimensional case. The authors also consider a certain generalization of \(\text{cat}_K(-)\) as follows: Consider \(\mathcal{G}\) a nonempty class of groups and let \(M\) be a manifold. A subset \(W\) of \(M\) is said to be \(\mathcal{G}\)-contractible if for every base point \(*\in W\) the image of \(\pi _1(W,*)\) in \(\pi _1(M,*)\) belongs to the class \(\mathcal{G}.\) Then, \(\text{cat}_{\mathcal{G}}(M)\) is the smallest number of open \(\mathcal{G}\)-contractible subsets of \(M\) that cover \(M\) (or infinity when such a cover does not exist). Similarly as done for \(\text{cat}_K(-),\) the authors analyze \(\text{cat}_{\mathcal{G}}(M^3)\) for compact 3-manifolds for certain choices of \(\mathcal{G}\) (among them we can mention the class of amenable groups or the class of solvable groups, for instance). Other similar studies about geometry \(\mathcal{K}\)-category or fillings are also considered.

MSC:

57N10 Topology of general \(3\)-manifolds (MSC2010)
57N13 Topology of the Euclidean \(4\)-space, \(4\)-manifolds (MSC2010)
57N15 Topology of the Euclidean \(n\)-space, \(n\)-manifolds (\(4 \leq n \leq \infty\)) (MSC2010)
57M30 Wild embeddings

Citations:

Zbl 0618.55003
Full Text: DOI

References:

[1] Bessières, L., Besson, G., Maillot, S., Boileau, M., Porti, J.: Geometrisation of \[33\]-Manifolds, EMS Tracts in Mathematics, vol. 13. European Mathematical Society, Zurich (2010) · Zbl 1244.57003
[2] Burde, G., Murasugi, K.: Links and Seifert fiber spaces. Duke Math. J. 37, 89-93 (1970) · Zbl 0195.54003 · doi:10.1215/S0012-7094-70-03713-0
[3] Clapp, M., Puppe, D.: Invariants of the Lusternik-Schnirelmann type and the topology of critical sets. Trans. Am. Math. Soc. 298(2), 603-620 (1986) · Zbl 0618.55003 · doi:10.1090/S0002-9947-1986-0860382-0
[4] Cornea, O., Lupton, G., Oprea, J., Tanrè, D.: Lusternik-Schnirelmannn Category, Mathematical Surveys Monographs, vol. 103. American Mathematical Society, Providence (2003) · Zbl 1032.55001
[5] Dranishnikov, A.N., Katz, M.G., Rudyak, Y.B.: Small values of the Lusternik-Schnirelman category for manifolds. Geom. Topol. 12(3), 1711-1727 (2008) · Zbl 1152.55002 · doi:10.2140/gt.2008.12.1711
[6] Evans, B., Jaco, W.: Varieties of groups and three-manifolds. Topology 12, 83-97 (1973) · Zbl 0258.55003 · doi:10.1016/0040-9383(73)90023-2
[7] Evans, B., Moser, L.: Solvable fundamental groups of compact 3-manifolds. Trans. Am. Math. Soc. 168, 189-210 (1972) · Zbl 0241.57002
[8] Félix, Y., Halperin, S., Lemaire, J.M.: The rational LS category of products and of Poincaré duality complexes. Topology 37(4), 749-756 (1998) · Zbl 0897.55001 · doi:10.1016/S0040-9383(97)00061-X
[9] Fox, R.H.: On the Lusternik-Schnirelmann category. Ann. Math. 42, 333-370 (1941) · Zbl 0027.43104 · doi:10.2307/1968905
[10] Freedman, M.H., Quinn, F.: Topology of 4-Manifolds. Princeton University Press, Princeton (1990) · Zbl 0705.57001
[11] Ganea, T.: Lusternik-Schnirelmann category and strong category. Ill. J. Math. 11, 417-427 (1967) · Zbl 0149.40703
[12] Ganea, T.: Some problems on numerical homotopy invariants. In: Symposium on Algebraic Topology, Battelle Seattle Res. Center, Seattle, Wash. Lecture Notes in Math., vol. 249, pp. 23-30. Springer, Berlin (1971) · Zbl 0237.55009
[13] Gómez-Larrañaga, J.C., González-Acuña, F.: Lusternik-Schnirelmann category of 3-manifolds. Topology 31, 791-800 (1992) · Zbl 0778.55002 · doi:10.1016/0040-9383(92)90009-7
[14] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, \[W.: 33\]-Manifolds that are covered by two open bundles. Bol. Soc. Mat. Mex. 10(3), 171-180 (2004) · Zbl 0882.55003
[15] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: Fundamental groups of manifolds with \[S^1\] S1-category \[22\]. Math. Z. 259, 419-432 (2008) · Zbl 1216.57010
[16] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: Manifolds with \[S^1\] S1-category 2 have cyclic fundamental groups. Math. Z. 266, 783-788 (2010) · Zbl 1207.57003
[17] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: Coverings of \[33\]-manifolds by three open solid tori. J. Knot Theory Ram. 19, 809-820 (2010) · Zbl 1209.57014 · doi:10.1142/S0218216510008145
[18] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: Links in \[S^3\] S3 of \[S^1\] S1-category \[22\]. Top. Proc. 38, 165-171 (2011) · Zbl 1213.57025
[19] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: Higher dimensional manifolds with \[S^1\] S1-category \[22\]. Math. Z. 271, 167-173 (2012) · Zbl 1250.57034
[20] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, \[W.: S^2\] S2- and \[P^2\] P2-category of manifolds. Top. Appl. 159, 1052-1058 (2012) · Zbl 0626.57006
[21] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: Amenable category of \[33\]-manifolds. Algebr. Geom. Top. 13, 905-925 (2013) · Zbl 1348.55006
[22] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: Categorical group invariants of \[33\]-manifolds (preprint) · Zbl 1306.57017
[23] Gómez-Larrañaga, J.C., González-Acuña, F., Heil, W.: On the \[KK\]-category of \[33\]-manifolds for \[KK\] a wedge of spheres or projective planes. Topology Proc. 44, 49-58 (2014) (e-published May, 2013) · Zbl 1295.57023
[24] Gómez-Larrañaga, J.C., Heil, \[W.: 33\]-Manifolds that are Union of Three Handlebodies of Genus At most 1, Knots 90 (Osaka, 1990), pp. 477-487. de Gruyter, Berlin (1992) · Zbl 0796.57009
[25] Gómez-Larrañaga, J.C., Heil, W.: Seifert-Takens-Singhof fillings of 3-manifolds. Top. Proc. 26(1), 187-198 (2001-2002) · Zbl 1039.57009
[26] Gómez-Larrañaga, J.C., Heil, W.: Singhof fillings of closed 3-manifolds. Manuscripta Math. 107, 15-23 (2002) · Zbl 0992.57016
[27] Gómez-Larrañaga, J.C., Heil, W.: Seifert unions of solid tori. Math. Z. 240, 767-785 (2002) · Zbl 1009.57024 · doi:10.1007/s002090100398
[28] Gromov, M.: Volume and bounded cohomology. Inst. Hautes Ètudes Sci. Publ. Math. 56, 5-99 (1983) · Zbl 0516.53046
[29] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[30] Heil, W., Wang, D.: On \[33\]-manifolds with torus or Klein bottle category \[22\]. Can. Math. Bull. doi:10.4153/CMB-2013-035-3 · Zbl 1301.57016
[31] Hess, K.P.: A proof of Ganeas conjecture for rational spaces. Topology 30(2), 205-214 (1991) · Zbl 0717.55014 · doi:10.1016/0040-9383(91)90006-P
[32] Iwase, N.: Ganeas conjecture on Lusternik-Schnirelmann category. Bull. Lond. Math. Soc. 30(6), 623-634 (1998) · Zbl 0947.55006 · doi:10.1112/S0024609398004548
[33] Iwase, N.: The Ganea conjecture and recent developments on Lusternik-Schnirelmann category (preprint). http://www.math.kyushu-u.ac.jp/ iwase/Articles/l-s_category7e-2.pdf · Zbl 1206.55005
[34] James, I.M.: Lusternik-Schnirelmann category. In: Handbook of Algebraic Topology, pp. 1293-1310. North-Holland, Amsterdam (1995) · Zbl 0863.55002
[35] Jessup, B.: Rational approximations to L-S category and a conjecture of Ganea. Trans. Am. Math. Soc. 317(2), 655-660 (1990) · Zbl 0691.55005 · doi:10.1090/S0002-9947-1990-0956033-8
[36] Krasnosel \[^{\prime }\]′skii \[^{\prime }\]′, M.A.: On special coverings of a finite-dimensional sphere. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 103, 961-964 (1955) · Zbl 0236.20032
[37] Lambrechts, P., Stanley, D., Vandembroucq, L.: Embedding up to homotopy of two-cones into Euclidean space. Trans. Am. Math. Soc. 354, 3973-4013 (2002) · Zbl 1004.55005 · doi:10.1090/S0002-9947-02-03030-1
[38] Lusternik, L., Schnirelmannn, L.: Mèthodes Topologiques dans les Problèmes Variationnels. Hermann, Paris (1934) · Zbl 0011.02803
[39] Luft, E.: Covering manifolds with open disks. Ill. J. Math. 13, 321-326 (1969) · Zbl 0191.54902
[40] Meeks III, W.H., Scott, P.: Finite group actions on \[33\]-manifolds. Invent. Math. 86, 287-346 (1986) · Zbl 0626.57006 · doi:10.1007/BF01389073
[41] Montejano, L.: A quick proof of Singhof’s \[{\rm cat}(M{\times }S^1)={\rm cat}(M)+1\] cat(M×S1)=cat(M)+1 Theorem. Manuscripta Math. 42, 49-52 (1983) · Zbl 0639.55001 · doi:10.1007/BF01171745
[42] Montejano-Peimbert, L.: Categorical and contractible covers of polyhedra; some topological invariants related to the Lusternik-Schnirelmannn category. In: Conference on Differential Geometry and Topology (Sardinia, 1988), vol. 58, suppl. 177264. Rend. Sem. Fac. Sci. Univ. Cagliari (1988) · Zbl 1004.55005
[43] Oprea, J., Rudyak, Y.: Detecting elements and Lusternik-Schnirelmann category of 3-manifolds. In: Lusternik-Schnirelmann Category and Related Topics (South Hadley, MA, 2001), Contemp. Math., vol. 316, pp. 181-191. American Mathematical Society, Providence (2001) · Zbl 1029.55006
[44] Rudyak, Y.B.: On the Ganea conjecture for manifolds. Proc. Am. Math. Soc. 125, 2511-2512 (1997) · Zbl 0882.55003 · doi:10.1090/S0002-9939-97-03982-8
[45] Singhof, W.: Minimal coverings of manifolds with balls. Manuscripta Math. 29, 385-415 (1979) · Zbl 0415.55001 · doi:10.1007/BF01303636
[46] Stallings, J.: On topologically unknotted spheres. Ann. Math. 77, 490-503 (1963) · Zbl 0121.18202 · doi:10.2307/1970127
[47] Stanley, D., Rodríguez Ordóñez, H.: A minimum dimensional counterexample to Ganea’s conjecture. Topology Appl. 157, 2304-2315 (2010) · Zbl 1198.55003
[48] Stanley, D., Rodríguez Ordóñez, H.: Dimensional restrictions upon counterexamples to Ganeas conjecture (preprint)
[49] Strom, J.A.: Two special cases of Ganeas conjecture. Trans. Am. Math. Soc. 352(2), 679-688 (2000) · Zbl 0932.55002 · doi:10.1090/S0002-9947-99-02046-2
[50] Takens, F.: The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelmannn category. Invent. Math. 6, 197-244 (1968) · Zbl 0198.56603 · doi:10.1007/BF01404825
[51] Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250-270 (1972) · Zbl 0236.20032 · doi:10.1016/0021-8693(72)90058-0
[52] Vandembroucq, L.: Suspension of Ganea fibrations and a Hopf invariant. Topol. Appl. 105(2), 187-200 (2000) · Zbl 1002.55003 · doi:10.1016/S0166-8641(99)00058-9
[53] Wang, D.: 3-Manifolds which can be covered by three open solid Klein bottles. Bol. Soc. Mat. Mex. doi:10.1007/s40590-014-0020-z · Zbl 1305.57041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.