×

Analytic uncertainty and sensitivity analysis of models with input correlations. (English) Zbl 1514.62098

Summary: Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

MSC:

62H20 Measures of association (correlation, canonical correlation, etc.)
62J05 Linear regression; mixed models
92D30 Epidemiology
Full Text: DOI

References:

[1] Jiang, J., Physica A, 391, 3140-3150 (2012)
[2] Liao, H., Physica A, 400, 47-56 (2014) · Zbl 1402.91266
[3] Huang, J. P., Phys. Rep., 564, 1-55 (2015)
[4] Zuzek, L.g. A.; Stanley, H. E.; Braunstein, L. A., Sci. Rep., 5, 12151 (2015)
[5] Xin, C.; Yang, G.; Huang, J. P., Physica A, 471, 666-673 (2017) · Zbl 1400.91264
[6] Li, D., Sci. Rep., 7, 45237 (2017)
[7] Mroz, T. A., Econometrica, 55, 765 (1987)
[8] Ligmann-Zielinska, A., PLoS One, 9, e109779 (2014)
[9] Becker, W., J. Biomech., 44, 1499-1506 (2011)
[10] Pannell, D. J., Agric. Econ., 16, 139-152 (1997)
[11] Saltelli, A., Chem. Rev., 105, 2811-2828 (2005)
[12] S. Carr, G.J. Savage, in: T. Lee (Ed.), Mathematical Computation with Maple V: Ideas and Applications, Boston, 1993, pp. 118-127. · Zbl 0797.65046
[13] Morio, J., Eur. J. Phys., 32, 1577-1583 (2011)
[14] Timme, M.; Casadiego, J., J. Phys. A, 47, 343001 (2014) · Zbl 1305.92036
[15] Posselt, D. J., J. Climate, 29, 455-479 (2016)
[16] Guo, L.; Luo, Z.; Zhu, Y., J. Stat. Mech., 2013, 11013 (2013) · Zbl 1456.91079
[17] Zhu, Y.; Li, W.; Cai, X., Physica A, 392, 6596-6602 (2013)
[18] Cacuci, D. G.; Ionescu-Bujor, M.; Navon, I. M., Sensitivity and Uncertainty Analysis: Applications to Large-Scale Systems, Vol. 2 (2005), CRC Press: CRC Press London · Zbl 1083.60002
[19] Frankel, J. I.; Keyhani, M.; Huang, M. G., Appl. Math. Comput., 217, 363-375 (2010) · Zbl 1205.80018
[20] Farina, D.; Hammes, P.; Reitzinger, S., Appl. Math. Comput., 219, 7181-7186 (2013) · Zbl 1316.78006
[21] Pedro, S. A.; Tonnang, H. E.Z.; Abelman, S., Appl. Math. Comput., 279, 170-186 (2016) · Zbl 1410.92133
[22] Iooss, B.; Lemaître, P., (Dellino, G.; Meloni, C., Uncertainty Management in Simulation-Optimization of Complex Systems. Uncertainty Management in Simulation-Optimization of Complex Systems, Operations Research/Computer Science Interfaces Series, vol. 59 (2015), Springer: Springer Boston), 101-122 · Zbl 1332.90003
[23] Zhu, Y., Physica A, 469, 52-59 (2017) · Zbl 1400.93072
[24] Sobol’, I. M., Math. Model. Comput. Exp., 1, 407-414 (1993) · Zbl 1039.65505
[25] Helton, J. C., Reliab. Eng. Syst. Saf., 91, 1175-1209 (2006)
[26] S. Kucherenko, D. Albrecht, A. Saltelli, Exploring multi-dimensional spaces: a comparison of Latin hypercube and quasi Monte Carlo sampling techniques, 2015. arXiv:1505.02350.
[27] A. Saltelli, M. Marco, S. Tarantola, in: P. Prado, R. Bolado (Eds.), 3rd Int. Symp. on Sensitivity Analysis of Model Output, Madrid, 2001, pp. 21-25.
[28] Xu, C.; Gertner, G. Z., Reliab. Eng. Syst. Saf., 93, 1563-1573 (2008)
[29] T. Most, in: M. Vorechovský, V. Sadílek, S. Seitl, V. Veselý, R.L. Muhanna, R.L. Mullen (Eds.), Proc. 5th Int. Conf. on Reliable Engineering Computing, Brno, 2012, pp. 335-351.
[30] Hao, W.; Lu, Z.; Li, L., Comput. Phys. Comm., 184, 1401-1413 (2013) · Zbl 1302.93194
[31] Li, L., Aerosp. Sci. Technol., 62, 75-86 (2017)
[32] Ishigami, T.; Homma, T., Proc. 1st Int. Symp on Uncertainty Modelling and Analysis, 398-403 (1990), IEEE
[33] Lira, I., Meas. Sci. Technol., 27, 075006-075013 (2016)
[34] Fraser, C., Science, 324, 1557-1561 (2009)
[35] Holme, P.; Masuda, N., PLoS One, 10, e0120567 (2015)
[36] Anderson, R. M.; May, R. M.; Anderson, B., Infectious Diseases of Humans: Dynamics and Control, Vol. 28 (1992), Oxford University Press: Oxford University Press Oxford
[37] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.J., J. Math. Biol., 28, 365-382 (1990) · Zbl 0726.92018
[38] Diekmann, O.; Heesterbeek, J. A.P.; Roberts, M. G., J. R. Soc. Interface, 7, 873-885 (2010)
[39] Macdonald, G., The Epidemiology and Control of Malaria (1957), Oxford University Press: Oxford University Press Oxford
[40] Van den Driessche, P.; Watmough, J., Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036
[41] Usman, I. G., Global Adv. Res. J. Phys. Appl. Sci., 5, 011-017 (2016)
[42] Mukandavire, Z.; Garira, W., J. Biol. Syst., 14, 323-355 (2006) · Zbl 1116.92042
[43] Safiel, R.; Massawe, E. S.; Makinde, D. O., Am. J. Math. Stat., 2, 75-88 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.