×

Interior over-penalized enriched Galerkin methods for second order elliptic equations. (English) Zbl 07801648

Summary: In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.

MSC:

65-XX Numerical analysis
35-XX Partial differential equations

Software:

Firedrake

References:

[1] Cockburn, B.; Gopalakrishnan, J.; Wang, H., Locally conservative fluxes for the continuous Galerkin method. SIAM J. Numer. Anal., 4, 1742-1776 (2007) · Zbl 1155.65100
[2] Chippada, S.; Dawson, C. N.; Martínez, M. L.; Wheeler, M. F., A projection method for constructing a mass conservative velocity field. Comput. Methods Appl. Mech. Eng., 1-2, 1-10 (1998) · Zbl 0953.76045
[3] Hughes, T. J.R.; Engel, G.; Mazzei, L.; Larson, M. G., The continuous Galerkin method is locally conservative. J. Comput. Phys., 2, 467-488 (2000) · Zbl 0969.65104
[4] Brezzi, F.; Douglas, J. J.; Marini, L. D., Two families of mixed finite elements for second order elliptic problems. Numer. Math., 2, 217-235 (1985) · Zbl 0599.65072
[5] Raviart, P.-A.; Thomas, J. M., A mixed finite element method for 2nd order elliptic problems, 292-315 · Zbl 0362.65089
[6] Nédélec, J.-C., Mixed finite elements in \(\mathbf{R}^3\). Numer. Math., 3, 315-341 (1980) · Zbl 0419.65069
[7] Nédélec, J.-C., A new family of mixed finite elements in \(\mathbf{R}^3\). Numer. Math., 1, 57-81 (1986) · Zbl 0625.65107
[8] Arnold, D. N., An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 4, 742-760 (1982) · Zbl 0482.65060
[9] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 5, 1749-1779 (2001/2002) · Zbl 1008.65080
[10] Wheeler, M. F., A priori \(L_2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal., 723-759 (1973) · Zbl 0232.35060
[11] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 2, 1319-1365 (2009) · Zbl 1205.65312
[12] Wang, J.; Ye, X., A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math., 103-115 (2013) · Zbl 1261.65121
[13] Sun, S.; Liu, J., A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method. SIAM J. Sci. Comput., 4, 2528-2548 (2009) · Zbl 1198.65197
[14] Lee, S.; Lee, Y.-J.; Wheeler, M. F., A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems. SIAM J. Sci. Comput., 3, A1404-A1429 (2016) · Zbl 1337.65128
[15] Mardal, K.-A.; Winther, R., Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl., 1, 1-40 (2011) · Zbl 1249.65246
[16] Evans, L. C., Partial Differential Equations. Graduate Studies in Mathematics (1998), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0902.35002
[17] Gudi, T., A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput., 272, 2169-2189 (2010) · Zbl 1201.65198
[18] Nitsche, J., über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hamb., 9-15 (1971), collection of articles dedicated to Lothar Collatz on his sixtieth birthday · Zbl 0229.65079
[19] Lüthen, N.; Juntunen, M.; Stenberg, R., An improved a priori error analysis of Nitsche’s method for Robin boundary conditions. Numer. Math., 4, 1011-1026 (2018) · Zbl 1448.65241
[20] Buffa, A.; Ortner, C., Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal., 4, 827-855 (2009) · Zbl 1181.65094
[21] Brenner, S. C., Poincaré-Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal., 1, 306-324 (2003) · Zbl 1045.65100
[22] Rathgeber, F.; Ham, D. A.; Mitchell, L.; Lange, M.; Luporini, F.; McRae, A. T.T.; Bercea, G.-T.; Markall, G. R.; Kelly, P. H.J., Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw., 3 (2017) · Zbl 1396.65144
[23] Falgout, R. D.; Yang, U. M., 632-641
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.