×

Dynamics for spherical spin glasses: disorder dependent initial conditions. (English) Zbl 1456.82846

In the paper the authors investigated the thermodynamic (\(N\to\infty\)), long-time (\(t\to\infty\)), behavior of a class of systems composed of \(N\) Langevin particles interacting with each other through a random potential. Namely, the thermodynamic limit of the empirical correlation and response functions is derived for spherical mixed p-spin disordered mean-field models, starting uniformly within one of the spherical bands on which (at low temperature) the Gibbs measure concentrates for the pure p-spin models and mixed perturbations of them. Moreover, the large time asymptotics of the corresponding coupled non-linear integro-differential equations is related to the geometric structure of the Gibbs measures (at low temperature), and derive their FDT (Fluctuation Dissipation Theorem) solution (at high temperature).

MSC:

82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82C22 Interacting particle systems in time-dependent statistical mechanics
35R09 Integro-partial differential equations
45K05 Integro-partial differential equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60F15 Strong limit theorems
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Adler, RJ; Taylor, JE, Random fields and geometry, Springer Monographs in Mathematics (2007), New York: Springer, New York · Zbl 1149.60003
[2] Anderson, TW, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Am. Math. Soc., 6, 170-176 (1955) · Zbl 0066.37402 · doi:10.1090/S0002-9939-1955-0069229-1
[3] Ané, C. et altri: Sur les inégalités de Sobolev logarithmiques. Panoramas et Syntheses, 10, Société Mathématique de France (2000) · Zbl 0982.46026
[4] Auffinger, A.; Ben Arous, G., Complexity of random smooth functions on the high-dimensional sphere, Ann. Probab., 41, 6, 4214-4247 (2013) · Zbl 1288.15045 · doi:10.1214/13-AOP862
[5] Auffinger, A.; Ben Arous, G.; Černý, J., Random matrices and complexity of spin glasses, Commun. Pure Appl. Math., 66, 2, 165-201 (2013) · Zbl 1269.82066 · doi:10.1002/cpa.21422
[6] Barrat, A.; Burioni, R.; Mézard, M., Dynamics within metastable states in a mean-field spin glass, J. Phys. A, 29, L81-L87 (1996) · Zbl 0943.82586 · doi:10.1088/0305-4470/29/5/001
[7] Barrat, A.; Franz, S., Basins of attraction of metastable states of the spherical \(p\)-spin model, J. Phys. A, 31, L119-L127 (1998) · Zbl 0909.60093 · doi:10.1088/0305-4470/31/6/001
[8] Ben Arous, G.; Dembo, A.; Guionnet, A., Aging of spherical spin glasses, Probab. Theory Relat. Fields, 120, 1-67 (2001) · Zbl 0993.60055 · doi:10.1007/PL00008774
[9] Ben Arous, G.: Aging and spin-glass dynamics. In: Proceedings of the International Congress of Mathematicians, Vol. III , 3-14, Higher Ed. Press, Beijing, 2002 (2002) · Zbl 1009.82017
[10] Ben Arous, G.; Dembo, A.; Guionnet, A., Cugliandolo-Kurchan equations for dynamics of Spin-Glasses, Probab. Theory Relat. Fields, 136, 619-660 (2006) · Zbl 1109.82021 · doi:10.1007/s00440-005-0491-y
[11] Ben Arous, G.; Gheissari, R.; Jagannath, A., Bounding flows for spherical spin glass dynamics, Commun. Math. Phys., 373, 1011-1048 (2020) · Zbl 1434.82086 · doi:10.1007/s00220-019-03649-4
[12] Ben Arous, G.; Jagannath, A., Spectral gap estimates in mean field spin glasses, Commun. Math. Phys., 361, 1-52 (2018) · Zbl 1397.82054 · doi:10.1007/s00220-018-3152-6
[13] Ben Arous, G., Subag, E., Zeitouni, O.: Geometry and temperature chaos in mixed spherical spin glasses at low temperature—the perturbative regime. Commun. Pure Appl. Math., to appear · Zbl 1453.82089
[14] Berthier, L.; Biroli, G., Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., 83, 587 (2011) · doi:10.1103/RevModPhys.83.587
[15] Bouchaud, JP; Cugliandolo, LF; Kurchan, J.; Mezard, M.; Young, AP, Out of equilibrium dynamics in spin-glasses and other glassy systems, Spin Glass Dynamics and Random Fields (1997), Singapore: World Scientific, Singapore
[16] Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H.: Geometry of Isotropic Convex Bodies. Mathematical surveys and monographs 196, (2014) · Zbl 1304.52001
[17] Chen, W-K, The Aizenman-Sims-Starr scheme and Parisi formula for mixed \(p\)-spin spherical models, Electron. J. Probab., 18, 94, 14 (2013) · Zbl 1288.60127
[18] Chen, W.-K., Panchenko, D., Subag, E.: The generalized TAP free energy. arXiv:1812.05066, (2018)
[19] Chen, W.-K., Panchenko, D., Subag, E.: The generalized TAP free energy II. arXiv:1903.01030, (2019)
[20] Crisanti, A.; Horner, H.; SOMMERS, H-J, The spherical p-spin interaction spin-glass model, Z. Phys. B, 92, 257-271 (1993) · doi:10.1007/BF01312184
[21] Crisanti, A.; Sommers, H-J, Thouless-Anderson-Palmer approach to the spherical \(p\)-spin spin glass model, J. Phys. I, 5, 7, 805-813 (1995)
[22] Cugliandolo, L.F.: Course 7: Dynamics of glassy systems. In: Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter, pp. 367-521. Springer (2003)
[23] Cugliandolo, LF; Kurchan, J., Analytical solution of the off-equilibrium Dynamics of a Long-Range Spin-Glass Model, Phys. Rev. Lett., 71, 173 (1993) · doi:10.1103/PhysRevLett.71.173
[24] Dembo, A.; Guionnet, A.; Mazza, C., Limiting dynamics for spherical models of spin glasses at high temperature, J. Stat. Phys., 126, 781-816 (2007) · Zbl 1153.82025 · doi:10.1007/s10955-006-9228-2
[25] Folena, G., Franz, S., Ricci-Tersenghi, F.: Memories from the ergodic phase: the awkward dynamics of spherical mixed p-spin models. arXiv:1903.01421, (2019)
[26] Gheissari, R., Jagannath, A.: On the spectral gap of spherical spin glass dynamics. Ann. Henri Poincaré (B), to appear · Zbl 1435.82025
[27] Guionnet, A.; Mazza, C., Long time behaviour of non-commutative processes solution of a linear differential equation, Prob. Theory. Rel. Fields, 131, 493-518 (2005) · Zbl 1066.35016 · doi:10.1007/s00440-004-0382-7
[28] Guionnet, A.: Dynamics for spherical models of sping glass and Aging. Proceedings of the Ascona Meeting (2004)
[29] Kurchan, J.; Parisi, G.; Virasoro, MA, Barriers and metastable states as saddle points in the replica approach, J. Phys. I, 3, 1819-1838 (1993)
[30] Mézard, M.; Parisi, G.; Sourlas, N.; Toulouse, G.; Virasoro, MA, Nature of the spin-glass phase, Phys. Rev. Lett., 52, 13, 1156-1159 (1984) · Zbl 0968.82528 · doi:10.1103/PhysRevLett.52.1156
[31] Mézard, M., Parisi, G., Virasoro, M.A.: Solution of ‘Solvable model of a spin glass’. In: Spin Glass Theory and Beyond, World Scientific, Singapore (1987) · Zbl 0992.82500
[32] Panchenko, D., The Parisi ultrametricity conjecture, Ann. Math., 177, 1, 383-393 (2013) · Zbl 1270.60060 · doi:10.4007/annals.2013.177.1.8
[33] Subag, E.: Free energy landscapes in spherical spin glasses. arXiv:1804.10576. (2018)
[34] Subag, E., The complexity of spherical \(p\)-spin models-a second moment approach, Ann. Probab., 45, 5, 3385-3450 (2017) · Zbl 1417.60029 · doi:10.1214/16-AOP1139
[35] Subag, E., The geometry of the Gibbs measure of pure spherical spin glasses, Invent. Math., 210, 1, 135-209 (2017) · Zbl 1379.60043 · doi:10.1007/s00222-017-0726-4
[36] Talagrand, M., Free energy of the spherical mean field model, Probab. Theory Relat. Fields, 134, 339-382 (2006) · Zbl 1130.82019 · doi:10.1007/s00440-005-0433-8
[37] Talagrand, M., Construction of pure states in mean field models for spin glasses, Probab. Theory Relat. Fields, 3-4, 148, 601-643 (2010) · Zbl 1204.82037 · doi:10.1007/s00440-009-0242-6
[38] Thouless, DJ; Anderson, PW; Palmer, RG, Solution of ‘Solvable model of a spin glass’, Philos. Mag., 35, 3, 593-601 (1977) · doi:10.1080/14786437708235992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.