×

A total Lagrangian, objective and intrinsically locking-free Petrov-Galerkin \(\mathrm{SE}(3)\) Cosserat rod finite element formulation. (English) Zbl 1533.74079

Summary: Based on more than three decades of rod finite element theory, this publication combines the successful contributions found in the literature and eradicates the arising drawbacks like loss of objectivity, locking, path-dependence and redundant coordinates. Specifically, the idea of interpolating the nodal orientations using relative rotation vectors, proposed by M. A. Crisfield and G. Jelenić [Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455, No. 1983, 1125–1147 (1999; Zbl 0926.74062)], is extended to the interpolation of nodal Euclidean transformation matrices with the aid of relative twists; a strategy that arises from the \(SE(3)\)-structure of the Cosserat rod kinematics. Applying a Petrov-Galerkin projection method, we propose a rod finite element formulation where the virtual displacements and rotations as well as the translational and angular velocities are interpolated instead of using the consistent variations and time-derivatives of the introduced interpolation formula. Properties such as the intrinsic absence of locking, preservation of objectivity after discretization and parameterization in terms of a minimal number of nodal unknowns are demonstrated by representative numerical examples in both statics and dynamics.
{© 2023 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.}

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)

Citations:

Zbl 0926.74062

References:

[1] CosseratE, CosseratF. Théorie des Corps déformables. Librairie Scientifique A. Hermann et Fils; 1909.
[2] TimoshenkoSLXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil Mag J Sci. 1921;41(245):744‐746.
[3] ReissnerE. On finite deformations of space‐curved beams. Zeit Ang Math Phys. 1981;32(6):734‐744. · Zbl 0467.73048
[4] SimoJC, Vu‐QuocL. A three‐dimensional finite‐strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng. 1986;58:79‐116. · Zbl 0608.73070
[5] AntmanSS. Nonlinear Problems of Elasticity. 107 of . Springer. 2nd ed.2005. · Zbl 1098.74001
[6] BetschP, SteinmannP. Frame‐indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Methods Eng. 2002;54(12):1775‐1788. · Zbl 1053.74041
[7] ReddyJN, SrinivasaAR. Misattributions and misnomers in mechanics: why they matter in the search for insight and precision of thought. Vietnam J Mech. 2020;42(3):283‐291.
[8] EugsterSR, HarschJ. A Variational Formulation of Classical Nonlinear Beam Theories. Springer International Publishing; 2020. 95-121.
[9] HarschJ, CapobiancoG, EugsterSR. Finite element formulations for constrained spatial nonlinear beam theories. Math Mech Solids. 2021;26(12):1838‐1863. · Zbl 07589921
[10] MeierC, PoppA, WallWA. Geometrically exact finite element formulations for slender beams: Kirchhoff-love theory versus Simo-Reissner theory. Arch Comput Methods Eng. 2019;26(1):163‐243.
[11] CardonaA, GeradinM. A beam finite element non‐linear theory with finite rotations. Int J Numer Methods Eng. 1988;26(11):2403‐2438. · Zbl 0662.73049
[12] IbrahimbegovićA, FreyF, KožarI. Computational aspects of vector‐like parametrization of three‐dimensional finite rotations. Int J Numer Methods Eng. 1995;38(21):3653‐3673. · Zbl 0835.73074
[13] CrisfieldMA, JelenićG. Objectivity of strain measures in the geometrically exact three‐dimensional beam theory and its finite‐element implementation. Proc Math Phys Eng Sci. 1983;1999(455):1125‐1147. · Zbl 0926.74062
[14] JelenićG, CrisfieldM. Geometrically exact 3D beam theory: implementation of a strain‐invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng. 1999;171(1):141‐171. · Zbl 0962.74060
[15] PetrovGI. Application of Galerkin’s method to the problem of stability of flow of a viscous fluid. J Appl Math Mech. 1994;4(3):3‐12.
[16] SailerS, LeineRI. Model reduction of the tippedisk: a path to the full analysis. Nonlinear Dyn. 2021;105(3):1955‐1975. · Zbl 1537.70007
[17] BorriM, BottassoC. An intrinsic beam model based on a helicoidal approximation-part I: formulation. Int J Numer Methods Eng. 1994;37(13):2267‐2289. · Zbl 0806.73028
[18] ČešarekP, SajeM, ZupanD. Dynamics of flexible beams: finite‐element formulation based on interpolation of strain measures. Finite Elem Anal Des. 2013;72:47‐63. · Zbl 1302.74088
[19] RendaF, CacuccioloV, DiasJ, SeneviratneL. Discrete Cosserat approach for soft robot dynamics: a new piece‐wise constant strain model with torsion and shears. Paper presented at: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016; Daejeon, South Korea:5495‐5502.
[20] SonnevilleV, CardonaA, BrülsO. Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput Methods Appl Mech Eng. 2014;268:451‐474. · Zbl 1295.74050
[21] EugsterSR, HeschC, BetschP, GlockerC. Director‐based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int J Numer Methods Eng. 2014;97(2):111‐129. · Zbl 1352.74152
[22] BulloF, MurrayRM. Proportional Derivative (PD) Control on the Euclidean Group. California Institute of Technology; 1995.
[23] ParkJ, ChungWK. Geometric integration on Euclidean group with application to articulated multibody systems. IEEE Trans Robot. 2005;21(5):850‐863.
[24] BarfootTD, FurgalePT. Associating uncertainty with three‐dimensional poses for use in estimation problems. IEEE Trans Robot. 2014;30(3):679‐693.
[25] ArnoldM, CardonaA, BrülsO. A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems. Springer International Publishing; 2016. 91‐158.
[26] HarschJ, EugsterSR. Finite Element Analysis of Planar Nonlinear Classical Beam Theories. Springer International Publishing; 2020. 123‐157.
[27] BalobanovV, NiiranenJ. Locking‐free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. Comput Methods Appl Mech Eng. 2018;339:137‐159. · Zbl 1440.74179
[28] MeierC, PoppA, WallWA. A locking‐free finite element formulation and reduced models for geometrically exact Kirchhoff rods. Comput Methods Appl Mech Eng. 2015;290:314‐341. · Zbl 1423.74502
[29] GrecoL, CuomoM, ContrafattoL, GazzoS. An efficient blended mixed B‐spline formulation for removing membrane locking in plane curved Kirchhoff rods. Comput Methods Appl Mech Eng. 2017;324:476‐511. · Zbl 1439.74157
[30] SantosH, PimentaP, Moitinho de AlmeidaJ. Hybrid and multi‐field variational principles for geometrically exact three‐dimensional beams. Int J Nonlinear Mech. 2010;45(8):809‐820.
[31] SantosH, PimentaP, Moitinho de AlmeidaJ. A hybrid‐mixed finite element formulation for the geometrically exact analysis of three‐dimensional framed structures. Comput Mech. 2011;48(5):591. · Zbl 1384.74045
[32] BetschP, JanzA. An energy-momentum consistent method for transient simulations with mixed finite elements developed in the framework of geometrically exact shells. Int J Numer Methods Eng. 2016;108(5):423‐455. · Zbl 07870602
[33] EgelandO, GravdahlJT. Modeling and Simulation for Automatic Control. Marine Cybernetics; 2002.
[34] BostenA, CosimoA, LinnJ, BrülsO. A mortar formulation for frictionless line‐to‐line beam contact. Multibody Syst Dyn. 2022;54(1):31‐52. · Zbl 1492.74117
[35] GéradinM, CardonaA. Flexible Multibody Dynamics: A Finite Element Approach. Wiley; 2001.
[36] dell’IsolaF, SteigmannDJ. Discrete and Continuum Models for Complex Metamaterials. Cambridge University Press; 2020.
[37] HairerE, NørsettSP, WannerG. Solving Ordinary Differential Equations I. Springer; 1993. · Zbl 0789.65048
[38] JayL. Convergence of Runge‐Kutta methods for differential‐algebraic systems of index 3. Appl Numer Math. 1995;17(2):97‐118. · Zbl 0832.65078
[39] HairerE, WannerG. Solving Ordinary Differential Equations II. 2nd ed.Springer; 2002.
[40] JayL. Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. SIAM J Numer Anal. 1996;33(1):368‐387. · Zbl 0903.65066
[41] HairerE, LubichC, WannerG. Geometric Numerical Integration: Structure‐Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics. Vol 31. 2nd ed.Springer Verlag; 2006. · Zbl 1094.65125
[42] BrülsO, CardonaA, ArnoldM. Lie group generalized‐
[( \alpha \]\) time integration of constrained flexible multibody systems. Mech Mach Theory. 2012;48:121‐137.
[43] NewmarkNM. A method of computation for structural dynamics. J Eng Mech Div. 1959;85(3):67‐94.
[44] ChungJ, HulbertG. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized‐
[( \alpha \]\) method. J Appl Mech. 1993;60(2):371‐375. · Zbl 0775.73337
[45] JansenKE, WhitingCH, HulbertGM. A generalized‐
[( \alpha \]\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng. 2000;190(3):305‐319. · Zbl 0973.76048
[46] IbrahimbegovicA. On the choice of finite rotation parameters. Comput Methods Appl Mech Eng. 1997;149(1):49‐71. Containing papers presented at the Symposium on Advances in Computational Mechanics. · Zbl 0924.73110
[47] HuynhDQ. Metrics for 3D rotations: comparison and analysis. J Math Imag Vis. 2009;35(2):155‐164. · Zbl 1490.68249
[48] OgdenRW. Non‐linear Elastic Deformations. Dover Publications; 1997.
[49] MeierC, PoppA, WallWA. An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput Methods Appl Mech Eng. 2014;278:445‐478. · Zbl 1423.74501
[50] MäkinenJ. Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng. 2007;70(9):1009‐1048. · Zbl 1194.74441
[51] MagnusK. Kreisel: Theorie und Anwendungen. 1st ed.Springer Berlin Heidelberg; 1971.
[52] HallB. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Springer International Publishing; 2015. · Zbl 1316.22001
[53] BakerA. Matrix Groups: An Introduction to Lie Group Theory. Springer; 2002. · Zbl 1009.22001
[54] IserlesA, Munthe‐KaasHZ, NørsettSP, ZannaA. Lie‐group methods. Acta Numer. 2000;9:215‐365. · Zbl 1064.65147
[55] MurrayRM, LiZ, SastrySS. A Mathematical Introduction to Robotic Manipulation. Taylor & Francis; 1994. · Zbl 0858.70001
[56] GallegoG, YezziA. A compact formula for the derivative of a 3‐D rotation in exponential coordinates. J Math Imag Vis. 2015;51(3):378‐384. · Zbl 1386.15056
[57] RomeroI, ArmeroF. An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy‐momentum conserving scheme in dynamics. Int J Numer Methods Eng. 2002;54:1683‐1716. · Zbl 1098.74713
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.