×

Variances of surface area estimators based on pixel configuration counts. (English) Zbl 1522.68694

Summary: The surface area of a set which is only observed as a binary pixel image is often estimated by a weighted sum of pixel configurations counts. In this paper we examine these estimators in a design based setting – we assume that the observed set is shifted uniformly randomly. Bounds for the difference between the essential supremum and the essential infimum of such an estimator are derived, which imply that the variance is in \(O(t^2)\) as the lattice distance \(t\) tends to zero. In particular, it is asymptotically neglectable compared to the bias. A simulation study shows that the theoretically derived convergence order is optimal in general, but further improvements are possible in special cases.

MSC:

68U10 Computing methodologies for image processing
52C07 Lattices and convex bodies in \(n\) dimensions (aspects of discrete geometry)
62G20 Asymptotic properties of nonparametric inference
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry

Software:

MAVI

References:

[1] Coeurjolly, D.; Flin, F.; Teytaud, O.; Tougne, L.; Asano, T., Multigrid convergence and surface area estimation, Geometry, Morphology and Computational Imaging, 101-119 (2003), Berlin: Springer, Berlin · Zbl 1032.68136 · doi:10.1007/3-540-36586-9_7
[2] Coeurjolly D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26, 252-258 (2004)
[3] Guo, J., Lattice points in rotated convex domains, Revista Matemática Iberoamericana, 31, 411-438 (2015) · Zbl 1359.52022 · doi:10.4171/RMI/839
[4] Hahn, U.; Sandau, K., Precision of surface area estimation using spatial grids, Acta Stereol., 8, 425-430 (1989)
[5] Heinrich, L.; Molchanov, I., Central limit theorem for a class of random measures associated with germ-grain models, Adv. Appl. Probab. (SGSA), 31, 283-314 (1999) · Zbl 0941.60025 · doi:10.1239/aap/1029955136
[6] Hug, D.; Kiderlen, M.; Svane, A., Voronoi-based estimation of Minkowski tensors from finite point samples, Discrete Comput. Geometry, 57, 545-570 (2017) · Zbl 1370.68309 · doi:10.1007/s00454-016-9851-x
[7] Ivić, A., Krätzel, E., Kühleitner, M., Nowak, W.: Lattice points in large regions and related arithmetic functions: recent developements in a very classical topic. In: Schwarz, W., et al. (eds.) Elementare und analytische Zahlentheorie—Proceeding of the 3rd Conference, pp. 89-128. Franz Steiner Verlag, Stuttgart (2006) · Zbl 1177.11084
[8] Janác̆ek, J.; Kubínová, L., Variances of length and surface area estimates by spatial grids: preliminar study, Image Anal. Stereol., 29, 45-52 (2010) · Zbl 1197.65026 · doi:10.5566/ias.v29.p45-52
[9] Kiderlen, M.; Rataj, J., On infinitesimal increase of volumes of morphological transforms, Mathematika, 53, 103-127 (2006) · Zbl 1117.28002 · doi:10.1112/S002557930000005X
[10] Klette, R., Sun, H.: Digital planar segment based polyhedrization for surface area estimation. In: Arcelli, C. et al. (eds.), 4th International Workshop on Visual Form, pp. 356-366 (2001) · Zbl 0985.65502
[11] Klette, R.; Rosenfeld, A., Digital Geometry (2004), Amsterdam: Elsevier, Amsterdam · Zbl 1064.68090
[12] Lachaud, J.; Thibert, B., Properties of Gauss digitized shapes and digital surface integration, J. Math. Imaging Vis., 54, 162-180 (2016) · Zbl 1338.65060 · doi:10.1007/s10851-015-0595-7
[13] Lindblad, J., Nyström, I.: Surface area estimation of digitized 3d objects using local computations. In: Braquelaire, A. et al. (eds.), 10th International Conference on Discrete Geometry for Computer Imagery, pp. 267-278 (2002) · Zbl 1055.68590
[14] Lindblad, J., Surface area estimation of digitized 3d objects using weighted local configurations, Image Vis. Comput., 23, 111-122 (2005) · doi:10.1016/j.imavis.2004.06.012
[15] Matérn, B., Precision of area estimation: a numerical study, J. Microsc., 153, 269-284 (1989) · doi:10.1111/j.1365-2818.1989.tb01477.x
[16] Matheron, G.: The theory of regionalized variables and its applications. Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau (1971)
[17] MAVI—Modular Algorithms for Volume Images. https://www.itwm.fraunhofer.de/en/departments/bv/ products-and-services/mavi.html
[18] Ohser, J.; Schladitz, K., 3d Images of Material Structures (2009), Weinheim: Wiley, Weinheim · doi:10.1002/9783527628308
[19] Ohser, J.; Nagel, W.; Schladitz, K., Miles formulae for Boolean models observed on lattices, Image Anal. Stereol., 28, 77-92 (2009) · Zbl 1183.65022 · doi:10.5566/ias.v28.p77-92
[20] Pavlidis, T., Algorithms for Graphics and Image Processing (1982), Rockville: Computer Science Press, Rockville · Zbl 0482.68086 · doi:10.1007/978-3-642-93208-3
[21] Schladitz, K., Ohser, J., Nagel, W.: Measuring intrinsic volumes in digital 3d images. In: Kuba, A. et. al. (eds.), 13th International Conference on Discrete Geometry for Computer Imagery, pp. 247-258 (2006) · Zbl 1136.68598
[22] Schneider, R., Convex Bodies - The Brunn-Minkowski Theory (2014), Rockville: Cambridge University Press, Rockville · Zbl 1287.52001
[23] Stelldinger, P.; Latecki, L.; Siqueira, M., Topological equivalence between a 3d object and the reconstruction of its digital image, IEEE Trans. Pattern Anal. Mach. Intell., 29, 126-140 (2007) · doi:10.1109/TPAMI.2007.250604
[24] Svane, A., Local digital estimators of intrinsic volumes for Boolean models and in the design-based setting, Adv. Appl. Probab. (SGSA), 46, 35-58 (2014) · Zbl 1350.94014 · doi:10.1239/aap/1396360102
[25] Svane, A., On multigrid convergence of local algorithms for intrinsic volumes, J. Math. Imaging Vis, 49, 148-172 (2014) · Zbl 1300.65012 · doi:10.1007/s10851-013-0450-7
[26] Svane, A., Estimation of intrinsic volumes from digital grey-scale images, J. Math. Imaging Vis., 49, 352-376 (2014) · Zbl 1361.68297 · doi:10.1007/s10851-013-0469-9
[27] Svane, A.: Asymptotic variance of grey-scale surface area estimators. Adv. Appl. Math. 62, 41-73 (2015) · Zbl 1395.62183
[28] Tajine, M., Daurat, A.: On local definitions of length of digital curves. In: International Conference on Discrete Geometry for Computer Imagery, 114-123 (2003) · Zbl 1254.68323
[29] Ziegel, J.; Kiderlen, M., Estimation of surface area and surface area measure of three-dimensional sets from digitizations, Image Vis. Comput., 28, 64-77 (2010) · doi:10.1016/j.imavis.2009.04.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.