×

On the Chow ring of some special Calabi-Yau varieties. (English) Zbl 1487.14017

Summary: We consider Calabi-Yau \(n\)-folds \(X\) arising from certain hyperplane arrangements. Using Fu-Vial’s theory of distinguished cycles for varieties with motive of abelian type, we show that the subring of the Chow ring of \(X\) generated by divisors, Chern classes and intersections of subvarieties of positive codimension injects into cohomology. We also prove Voisin’s conjecture for \(X\), and Voevodsky’s smash-nilpotence conjecture for odd-dimensional \(X\).

MSC:

14C15 (Equivariant) Chow groups and rings; motives
14C25 Algebraic cycles
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)

References:

[1] André, Y., Motifs de dimension finie d’après. In: Kimura, S.-I. and O’Sullivan, P. (eds.), Séminaire Bourbaki, Astérisque 299 Exp. No. 929, Vol. viii, 2003/2004, pp. 115-145. · Zbl 1080.14010
[2] André, Y., Une introduction aux motifs (motifs purs, motifs mixtes, périodes). In: Panoramas et Synthèses [Panoramas and syntheses], Vol. 17, Société Mathématique de France, Paris, 2004, xii+261 pp. ISBN: 2-85629-164-3 · Zbl 1060.14001
[3] Beauville, A., Sur l’anneau de Chow d’une variété abélienne. Math. Ann.273(1986), 647-651. · Zbl 0566.14003
[4] Beauville, A. and Voisin, C., On the Chow ring of a K3 surface. J. Alg. Geom.13(2004), 417-426. · Zbl 1069.14006
[5] Bini, G., Laterveer, R., and Pacienza, G., Voisin’s conjecture for zero-cycles on Calabi-Yau varieties and their mirrors. Adv. Geom.20(2020), no. 1, 91-108. · Zbl 1437.14015
[6] Burek, D., Higher-dimensional Calabi-Yau manifolds of Kummer type. Math. Nachrichten. 293(2020), no. 4, 638-650. · Zbl 1525.14050
[7] Cynk, S. and Hulek, K., Construction and examples of higher-dimensional modular Calabi-Yau manifolds. Can. Math. Bull.50(2007), no. 4, 486-503. · Zbl 1141.14009
[8] Cynk, S. and Kocel-Cynk, B., Classification of double octic Calabi-Yau threefolds with \({h}^{1,2}\le 1\) defined by an arrangement of eight planes. Commun. Contemp. Math. Vol. 22, No. 01, 1850082 (2020), 38 pp. doi.org/10.1142/S0219199718500827 · Zbl 1437.14044
[9] Cynk, S. and Meyer, C., Geometry and arithmetic of certain double octic Calabi-Yau threefolds. Can. Math. Bull.48(2005), no. 2, 180-194. · Zbl 1079.14049
[10] Cynk, S. and Meyer, C., Modularity of some non-rigid double octic Calabi-Yau threefolds. Rocky Mountain J. Math.38(2008), no. 6, 1937-1958. · Zbl 1161.14016
[11] Cynk, S., Schütt, M., and Van Straten, D., Hilbert modularity of some double octic Calabi-Yau threefolds. J. Number Theory210(2020), 313-332. · Zbl 1445.14059
[12] Cynk, S. and Van Straten, D., Periods of rigid double octic Calabi-Yau threefolds. Ann. Pol. Math. 123(2019), no. Part 1, 243-258. · Zbl 1436.14073
[13] Deninger, C. and Murre, J., Motivic decomposition of abelian schemes and the Fourier transform. J. Reine Angew. Math.422(1991), 201-219. · Zbl 0745.14003
[14] Dolgachev, I., Weighted projective varieties. In: Carrell, J. B. (ed.), Group actions and vector fields, (Vancouver, B.C., 1981), Lecture Notes in Math., 956, Springer, Berlin, Germany, 1982, pp. 34-71. · Zbl 0516.14014
[15] Fu, L., Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi-Yau complete intersections. Adv. Math.244(2013), 894-924. · Zbl 1300.14007
[16] Fu, L. and Vial, C., Distinguished cycles on varieties with motive of abelian type and the section property. J. Alg. Geom.29(2020), 53-107. · Zbl 1430.14020
[17] Fulton, W., Intersection theory. Springer-Verlag Ergebnisse der Mathematik, Berlin Heidelberg New York and Tokyo, 1984. · Zbl 0541.14005
[18] Gerkmann, R., Sheng, M., Van Straten, D., and Zuo, K., On the monodromy of the moduli space of Calabi-Yau threefolds coming from eight planes in \({\mathbb{P}}^3\). Math. Ann.355(2013), 187-214. · Zbl 1260.14048
[19] Ingalls, C. and Logan, A., On the Cynk-Hulek criterion for crepant resolutions of double covers. Preprint, 2020. arXiv:2006.14981v2 · Zbl 1509.14033
[20] Kahn, B. and Sebastian, R., Smash-nilpotent cycles on abelian 3-folds. Math. Res. Lett.16(2009), 1007-1010. · Zbl 1191.14009
[21] Kahn, B. and Sujatha, R., Birational motives I: pure birational motives. Ann. K-Theory. 1(2016), no. 4, 379-440. · Zbl 1388.14025
[22] Kimura, S.-I., Chow groups are finite dimensional, in some sense. Math. Ann.331(2005), no. 1, 173-201. · Zbl 1067.14006
[23] Laterveer, R., Some results on a conjecture of Voisin for surfaces of geometric genus one. Boll. Unione Mat. Italiana9(2016), no. 4, 435-452. · Zbl 1375.14025
[24] Laterveer, R., Some desultory remarks concerning algebraic cycles and Calabi-Yau threefolds. Rend. Circ. Mat. Palermo65(2016), no. 2, 333-344. · Zbl 1360.14017
[25] Laterveer, R., Algebraic cycles and Todorov surfaces. Kyoto J. Math.58(2018), no. 3, 493-527. · Zbl 1402.14007
[26] Laterveer, R., Some Calabi-Yau fourfolds verifying Voisin’s conjecture. Ric. di Mat.67(2018), no. 2, 401-411. · Zbl 1405.14015
[27] Laterveer, R., Zero-cycles on self-products of varieties: some elementary examples verifying Voisin’s conjecture, Bolletino Unione Mat. Italiana14 no. 2 (2021), 323-329, https://doi.org/10.1007/s40574-020-00259-0 · Zbl 1467.14014
[28] Laterveer, R. and Vial, C., On the Chow ring of Cynk-Hulek Calabi-Yau varieties and Schreieder varieties. Can. J. Math.72(2020), no. 2, 505-536. · Zbl 1440.14023
[29] Matsumoto, K., Sasaki, T., and Yoshida, M., The monodromy of the period map of a 4-parameter family of K3 surfaces and the hypergeometric function of type (3, 6). Int. J. Math.3(1992), no. 1, 1-164. · Zbl 0763.32016
[30] Matsumoto, K. and Terasoma, T., Arithmetic-geometric means for hyperelliptic curves and Calabi-Yau varieties. Int. J. Math.21(2010), no. 7, 939-949. · Zbl 1198.14044
[31] Meyer, C., Modular Calabi-Yau threefolds. Fields Institute Monographs, 22. American Mathematical Society, Providence, RI, 2005. · Zbl 1096.14032
[32] Murre, J., Nagel, J. and Peters, C., Lectures on the theory of pure motives. Amer. Math. Soc. University Lecture Series, 61, American Mathematical Society, Providence, RI, 2013. · Zbl 1273.14002
[33] O’Sullivan, P., Algebraic cycles on an Abelian variety. J. Reine Angew. Math.654(2011), 1-81. · Zbl 1258.14006
[34] Paranjape, K., Abelian varieties associated to certain K3 surfaces. Comp. Math.68(1988), no. 1, 11-22. · Zbl 0715.14037
[35] Scholl, T., Classical motives. In: Jannsen, U.et al. (eds.), Motives, Proceedings of Symposia in Pure Mathematics, 55, 1994, Part 1. · Zbl 0814.14001
[36] Shen, M. and Vial, Ch., The Fourier transform for certain hyperKähler fourfolds. Memoirs of the AMS 240 (2016), no.1139. · Zbl 1386.14025
[37] Terasoma, T., Complete intersections of hypersurfaces—the Fermat case and the quadric case. Japan J. Math. (N.S.)14(1988), no. 2, 309-384. · Zbl 0689.14023
[38] Terasoma, T., Algebraic correspondences between genus three curves and certain Calabi-Yau varieties. Amer. J. Math.132(2010), no. 1, 181-200. · Zbl 1186.14041
[39] Vial, C., Generic cycles, Lefschetz representations and the generalized Hodge and Bloch conjectures for abelian varieties. Annali della Scuola Normale Superiore di Pisa21(2020), 1389-1429. · Zbl 1486.14014
[40] Voevodsky, V., A nilpotence theorem for cycles algebraically equivalent to zero. Int. Math. Res. Not.4(1995), 187-198. · Zbl 0861.14006
[41] Voisin, C., The generalized Hodge and Bloch conjectures are equivalent for general complete intersections. Ann. Sci. Ecole Norm. Sup.46(2013), no. 3, 449-475. · Zbl 1282.14015
[42] Voisin, C., Chow rings, decomposition of the diagonal, and the topology of families. Princeton University Press, Princeton and Oxford, 2014. · Zbl 1288.14001
[43] Voisin, C., Remarks on zero-cycles of self-products of varieties. In: Maruyama, M. (ed.), Moduli of vector bundles, Proceedings of the Taniguchi Congress Marcel Dekker, New York, Basel and Hong Kong, 1994. · Zbl 0912.14003
[44] Yoshida, M., Hypergeometric functions, my love: modular interpretations of configuration spaces. Aspects of Mathematics, E32. Friedr. Vieweg & Sohn, Braunschweig, 1997. · Zbl 0889.33008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.