×

Design of structured controllers for linear time-delay systems. (English) Zbl 1504.93183

Breda, Dimitri (ed.), Controlling delayed dynamics. Advances in theory, methods and applications. Cham: Springer. CISM Courses Lect. 604, 247-288 (2023).
Summary: We present an overview of control design methods for linear time-delay systems, which are grounded in matrix theory and numerical linear algebra techniques, such as eigenvalue computations, solving Lyapunov matrix equations, eigenvalue perturbation theory and eigenvalue optimization. The methods are particularly suitable for the design of structured controllers, as they rely on a direct optimization of stability, robustness and performance indicators as a function of controller or design parameters. Several illustrations complete the presentation.
For the entire collection see [Zbl 1496.93003].

MSC:

93C23 Control/observation systems governed by functional-differential equations
93C43 Delay control/observation systems
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Appelmans, P., & Michiels, W. (2022). TDS-CONTROL: A MATLAB package for the analysis and controller-design of time-delay systems. In Proceedings of the 18th IFAC Workshop on Control Applications of Optimization, Gif-sur-Yvette, France.
[2] Avellar, CE; Hale, JK, On the zeros of exponential polynomials, Journal of Mathematical Analysis and Applications, 73, 434-452 (1980) · Zbl 0435.30005 · doi:10.1016/0022-247X(80)90289-9
[3] Borgioli, F.; Michiels, W., A novel method to compute the structured distance to instability for combined uncertainties on delays and system matrices, IEEE Transactions on Automatic Control, 65, 4, 1747-1754 (2020) · Zbl 1533.93275 · doi:10.1109/TAC.2019.2934182
[4] Borgioli, F.; Michiels, W.; Lu, D.; Vandereycken, B., A globally convergent method to compute the real stability radius for time-delay systems, Systems & Control Letters, 127, 44-51 (2019) · Zbl 1425.93223 · doi:10.1016/j.sysconle.2019.03.009
[5] Borgioli, F., Hajdu, D., Insperger, T., Stépán, G., & Michiels, W. (2020). Pseudospectral method for assessing stability robustness for linear time-periodic delayed dynamical systems. International Journal for Numerical Methods in Engineering.
[6] Boyd, S.; Balakrishnan, V., A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its \(\cal{L}_{\infty } \)-norm, Systems & Control Letters, 15, 1-7 (1990) · Zbl 0704.93014 · doi:10.1016/0167-6911(90)90037-U
[7] Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press. · Zbl 1058.90049
[8] Breda, D. (2023). Pseudospectral Methods for the Stability Analysis of Delay Equations. Part I: the Infinitesimal Generator Approach. methods and applications. In D. Breda (Ed.) Controlling Delayed Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp. 65-94). Wien-New York: Springer. · Zbl 1502.93009
[9] Breda, D. (2023). Pseudospectral Methods for the Stability Analysis of Delay Equations. Part II: the Solution Operator Approach. methods and applications. In D. Breda (Ed.) Controlling Delayed Dynamics: Advances in Theory, Methods and Applications, CISM Lecture Notes (pp. 95-116). Wien-New York: Springer. · Zbl 1504.93284
[10] Breda, D.; Maset, S.; Vermiglio, R., Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM Journal on Scientific Computing, 27, 2, 482-495 (2005) · Zbl 1092.65054 · doi:10.1137/030601600
[11] Breda, D., Maset, S., & Vermiglio, R. (2009). TRACE-DDE: a tool for robust analysis and characteristic equations for delay differential equations. In Topics in time-delay systems, Lecture Notes in Control and Information Sciences (Vol. 388, pp. 145-155). Springer.
[12] Bruinsma, NA; Steinbuch, M., A fast algorithm to compute the \(\cal{H}_{\infty } \)-norm of a transfer function matrix, Systems & Control Letters, 14, 287-293 (1990) · Zbl 0699.93021 · doi:10.1016/0167-6911(90)90049-Z
[13] Burke, JV; Lewis, AS; Overton, ML, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM Journal on Optimization, 15, 3, 751-779 (2005) · Zbl 1078.65048 · doi:10.1137/030601296
[14] Burke, J. V., Henrion, D., Lewis, A. S., Overton, M. L. (2006). HIFOO - a MATLAB package for fixed-order controller design and H-infinity optimization. In Proceedings of the 5th IFAC Symposium on Robust Control Design, Toulouse, France.
[15] Curtain, R. F., & Zwart, H. (1995). An introduction to infinite-dimensional linear systems theory, Texts in Applied Mathematics (Vol. 21). Springer. · Zbl 0839.93001
[16] Dileep, D.; Van Parys, R.; Pipeleers, G.; Hetel, L.; Richard, J-P; Michiels, W., Design of robust decentralised controllers for MIMO plants with delays through network structure exploitation, The International Journal of Control, 93, 10, 2275-2289 (2020) · Zbl 1453.93120 · doi:10.1080/00207179.2018.1554268
[17] Du, NH; Linh, VH; Mehrmann, V.; Thuan, DD, Stability and robust stability of linear time-invariant delay differential-algebraic equations, SIAM Journal on Matrix Analysis and Applications, 34, 4, 1631-1654 (2013) · Zbl 1326.34117 · doi:10.1137/130926110
[18] Engelborghs, K.; Luzyanina, T.; Roose, D., Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Transactions on Mathematical Software, 28, 1, 1-24 (2002) · Zbl 1070.65556 · doi:10.1145/513001.513002
[19] Fridman, E., Stability of linear descriptor systems with delay: A Lyapunov-based approach, Journal of Mathematical Analysis and Applications, 273, 24-44 (2002) · Zbl 1032.34069 · doi:10.1016/S0022-247X(02)00202-0
[20] Gomez, M. A., & Michiels, W. (2019a). Analysis and computation of the \(\cal{H}_2\) norm of delay differential algebraic equations. IEEE Transactions on Automatic Control, 65(5), 2192-2199. · Zbl 1533.93319
[21] Gomez, M. A., & Michiels, W. (2019b). Characterization and optimization of the smoothed spectral abscissa for time-delay systems. The International Journal of Robust and Nonlinear Control, 29(13), 4402-4418. · Zbl 1426.93250
[22] Gomez, MA; Egorov, A.; Mondié, S.; Michiels, W., Optimization of the \(\cal{H}_2\) norm for single-delay systems, with application to control design and model approximation, IEEE Transactions on Automatic Control, 64, 2, 804-811 (2019) · Zbl 1482.93191
[23] Gomez, M. A., Jungers, R. M., & Michiels, W. (2020). On the \(m\)-dimensional Cayley-Hamilton theorem and its application to an algebraic decision problem inferred from the \(\cal{H}_2\) norm analysis of delay systems. Automatica, 113, 108761. · Zbl 1440.93142
[24] Gomez, M. A., Jungers, R. M. & Michiels, W. (2010). On the strong \(\cal{H}_2\) norm of differential algebraic systems with multiple delays: finiteness criteria, regularization and computation. IEEE Transactions on Automatic Control. Accepted for publication.
[25] Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Birkhauser. · Zbl 1039.34067
[26] Gumussoy, S.; Michiels, W., A predictor - corrector type algorithm for the pseudospectral abscissa computation of time-delay systems, Automatica, 46, 4, 657-664 (2010) · Zbl 1193.93105 · doi:10.1016/j.automatica.2010.01.032
[27] Gumussoy, S.; Michiels, W., Fixed-order H-infinity control for interconnected systems using delay differential algebraic equations, SIAM Journal on Control and Optimization, 49, 5, 2212-2238 (2011) · Zbl 1234.93038 · doi:10.1137/100816444
[28] Güttel, S.; Van Beeumen, R.; Meerbergen, K.; Michiels, W., NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems, SIAM Journal on Scientific Computing, 36, 6, A2842-A2864 (2014) · Zbl 1321.47128 · doi:10.1137/130935045
[29] Ha, P.; Mehrmann, V., Analysis and reformulation of linear delay differential-algebraic equations, The Electronic Journal of Linear Algebra, 23, 703-730 (2012) · Zbl 1323.34089 · doi:10.13001/1081-3810.1552
[30] Hajdu, D.; Borgioli, F.; Michiels, W.; Insperger, T.; Stépán, G., Robust stability of milling operations based on pseudospectral approach, International Journal of Machine Tools and Manufacture, 149 (2020) · doi:10.1016/j.ijmachtools.2019.103516
[31] Hale, J. K., & Verduyn Lunel, S. M. (1993). Introduction to functional differential equations, Applied Mathematical Sciences (Vol. 99). Springer. · Zbl 0787.34002
[32] Hale, J. K., & Verduyn Lunel, S. M. (2002). Strong stabilization of neutral functional differential equations. IMA Journal of Mathematical Control and Information, 19, 5-23. · Zbl 1005.93026
[33] Jarlebring, E.; Meerbergen, K.; Michiels, W., A Krylov method for the delay eigenvalue problem, SIAM Journal on Scientific Computing, 32, 6, 3278-3300 (2010) · Zbl 1226.65069 · doi:10.1137/10078270X
[34] Jarlebring, E.; Vanbiervliet, J.; Michiels, W., Characterizing and computing the \(\cal{H}_2\) norm of time-delay systems by solving the delay Lyapunov equation, IEEE Transactions on Automatic Control, 56, 814-825 (2011) · Zbl 1368.93094 · doi:10.1109/TAC.2010.2067510
[35] Jarlebring, E., Bennedich, M., Mele, G., Ringh, E., & Upadhyaya, P. (2018). NEP-PACK: A julia package for nonlinear eigenproblems - v0.2.
[36] Kharitonov, V.; Plischke, E., Lyapunov matrices for time-delay systems, Systems & Control Letters, 55, 9, 697-706 (2006) · Zbl 1100.93045 · doi:10.1016/j.sysconle.2006.01.005
[37] Lewis, A., & Overton, M. L. (2009). Nonsmooth optimization via BFGS. Available from http://cs.nyu.edu/overton/papers.html.
[38] Michiels, W. (2019). Control of linear systems with delays (pp. 1-7). London: Springer. ISBN 978-1-4471-5102-9.
[39] Michiels, W. (2011). Spectrum-based stability analysis and stabilisation of systems described by delay differential algebraic equations. IET Control Theory & Applications, 5, 1829-1842.
[40] Michiels, W.; Boussaada, I.; Niculescu, S-I, An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem, SIAM Journal on Matrix Analysis and Applications, 38, 2, 599-620 (2017) · Zbl 1515.35177 · doi:10.1137/16M107774X
[41] Michiels, W.; Engelborghs, K.; Roose, D.; Dochain, D., Sensitivity to infinitesimal delays in neutral equations, SIAM Journal on Control and Optimization, 40, 4, 1134-1158 (2002) · Zbl 1016.34079 · doi:10.1137/S0363012999355071
[42] Michiels, W.; Fenzi, L., Spectrum-based stability analysis and stabilization of a class of time-periodic time delay systems, SIAM Journal on Matrix Analysis and Applications, 5, 16, 1829-1842 (2021) · Zbl 1461.65049
[43] Michiels, W.; Gomez, MA, On the dual linear periodic time-delay system: Spectrum and Lyapunov matrices, with application to \(\cal{H}_2\) analysis and balancing, The International Journal of Robust and Nonlinear Control, 30, 10, 3906-3922 (2020) · Zbl 1466.93077 · doi:10.1002/rnc.4970
[44] Michiels, W.; Gumussoy, S., Characterization and computation of H-infinity norms of time-delay systems, SIAM Journal on Matrix Analysis and Applications, 31, 4, 2093-2115 (2010) · Zbl 1202.93062 · doi:10.1137/090758751
[45] Michiels, W., & Niculescu, S.-I. (2014). Stability and stabilization of time-delay systems. An eigenvalue based approach, 2nd edn. SIAM. · Zbl 1305.93002
[46] Michiels, W.; Vyhlídal, T., An eigenvalue based approach to the robust stabilization of linear time-delay systems of neutral type, Automatica, 41, 6, 991-998 (2005) · Zbl 1091.93026 · doi:10.1016/j.automatica.2004.11.032
[47] Michiels, W.; Vyhlídal, T.; Zítek, P., Control design for time-delay systems based on quasi-direct pole placement, Journal of Process Control, 20, 3, 337-343 (2010) · doi:10.1016/j.jprocont.2009.11.004
[48] Michiels, W.; Vyhlídal, T.; Ziték, P.; Nijmeijer, H.; Henrion, D., Strong stability of neutral equations with an arbitrary delay dependency structure, SIAM Journal on Control and Optimization, 48, 2, 763-786 (2009) · Zbl 1194.93190 · doi:10.1137/080724940
[49] Michiels, W.; Zhou, B., Computing delay lyapunov matrices and \(\cal{H}_2\) norms for large-scale problems, SIAM Journal on Matrix Analysis and Applications, 40, 3, 845-869 (2019) · Zbl 1474.34426 · doi:10.1137/18M1209842
[50] Niculescu, S.-I. (2001). Delay effects on stability. A robust control approach, Lecture Notes in Control and Information Sciences (Vol. 269). Springer. · Zbl 0997.93001
[51] Overton, M. (2009). HANSO: a hybrid algorithm for nonsmooth optimization. http://cs.nyu.edu/overton/software/hanso/.
[52] Pilbauer, D. (2017). Spectral Methods in Vibration Suppression Control Systems with Time Delays. Ph.D. thesis, Double Doctorate Chech Technical University in Prague - KU Leuven.
[53] Pontes Duff, I., Poussot-Vassal, C., & Seren, C. (2018). \(H_2\)-optimal model approximation by input/output-delay structured reduced order models. Systems & Control Letters, 117, 60 - 67. · Zbl 1390.93189
[54] Saad, Y. (1992). Numerical methods for large eigenvalue problems. Manchester University Press. · Zbl 0991.65039
[55] Sieber, J., Engelborghs, K., Luzyanina, T., Samey, G., & Roose, D. (2016). DDE-BIFTOOL manual - bifurcation analysis of delay differential equations - v3.1.1.
[56] Sipahi, R.; Niculescu, SI; Abdallah, CT; Michiels, W.; Gu, K., Stability and stabilization of systems with time delay, IEEE Control Systems Magazine, 31, 38-65, 3278-3300 (2011) · Zbl 1395.93271
[57] Van Beeumen, R.; Meerbergen, K.; Michiels, W., Compact rational Krylov methods for nonlinear eigenvalue problems, SIAM Journal on Matrix Analysis and Applications, 36, 2, 820-838 (2015) · Zbl 1319.65042 · doi:10.1137/140976698
[58] Vanbiervliet, J.; Vandereycken, B.; Michiels, W.; Vandewalle, S., A nonsmooth optimization approach for the stabilization of time-delay systems, ESAIM: Control, Optimisation and Calculus of Variations, 14, 3, 478-493 (2008) · Zbl 1146.65056
[59] Vanbiervliet, J., Michiels, W., & Vandewalle, S. (2009a). Smooth stabilization and optimal \(\cal{H}_2\) design. In Proceedings of the IFAC Workshop on Control Applications of Optimization, Jyväskylä, Finland.
[60] Vanbiervliet, J.; Vandereycken, B.; Michiels, W.; Vandewalle, S.; Diehl, M., The smoothed spectral abscissa for robust stability optimization, SIAM Journal on Optimization, 20, 1, 156-171 (2009) · Zbl 1185.93110 · doi:10.1137/070704034
[61] Vanbiervliet, J.; Michiels, W.; Jarlebring, E., Using spectral discretisation for the optimal \(\cal{H}_2\) design of time-delay systems, International Journal of Control, 84, 2, 228-241 (2011) · Zbl 1222.93177 · doi:10.1080/00207179.2010.547222
[62] Villafuerte, R.; Mondié, S.; Garrido, R., Tuning of proportional retarded controllers: Theory and experiments, IEEE Transactions on Control Systems Technology, 21, 3, 983-990 (2013) · doi:10.1109/TCST.2012.2195664
[63] Vyhlídal, T., Zítek, P., & Paulů, K. (2009). Design, modelling and control of the experimental heat transfer set-up. In J. J. Loiseau et al. (Ed.), Topics in time delay systems. analysis, algorithms, and control, Lecture Notes in Control and Information Sciences (Vol. 308, pp. 303-314). Springer.
[64] Vyhlídal, T., Michiels, W., & McGahan, P. (2010). Synthesis of strongly stable state-derivative controllers for a time-delay system using constrained non-smooth optimization. IMA Journal of Mathematical Control and Information, 27(4), 437-455. · Zbl 1206.93038
[65] Zhou, B.; Liu, Q.; Michiels, W., Design of pseudo-predictor feedback for neutral-type linear systems with both state and input delays, Automatica, 109 (2019) · Zbl 1429.93121 · doi:10.1016/j.automatica.2019.108502
[66] Zhou, K., Doyle, J. C., & Glover, K. (1995). Robust and optimal control. Prentice Hall. · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.