×

A numerical approach to harmonic noncommutative spectral field theory. (English) Zbl 1247.81546

Summary: We present a first numerical investigation of a noncommutative gauge theory defined via the spectral action for Moyal space with harmonic propagation. This action is approximated by finite matrices. Using Monte Carlo simulation we study various quantities such as the energy density, the specific heat density and some order parameters, varying the matrix size and the independent parameters of the model. We find a peak structure in the specific heat which might indicate possible phase transitions. However, there are mathematical arguments which show that the limit of infinite matrices can be quite different from the original spectral model.

MSC:

81T75 Noncommutative geometry methods in quantum field theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81T13 Yang-Mills and other gauge theories in quantum field theory
65C05 Monte Carlo methods
82B30 Statistical thermodynamics
82B26 Phase transitions (general) in equilibrium statistical mechanics
53D17 Poisson manifolds; Poisson groupoids and algebroids
81V25 Other elementary particle theory in quantum theory

References:

[1] M. R. Douglas, Nonperturbative Aspects of Strings, Branes and Supersymmetry, eds. M. Duff (World Scientific, Singapore, 1999) pp. 131–156, arXiv:hep-th/9901146.
[2] DOI: 10.1016/S0370-1573(03)00059-0 · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[3] DOI: 10.1016/j.geomphys.2005.04.019 · Zbl 1083.81014 · doi:10.1016/j.geomphys.2005.04.019
[4] DOI: 10.1063/1.528200 · Zbl 0652.46026 · doi:10.1063/1.528200
[5] DOI: 10.1088/0264-9381/9/1/008 · Zbl 0742.53039 · doi:10.1088/0264-9381/9/1/008
[6] Minwalla S., J. High Energy Phys. 0002 pp 020–
[7] DOI: 10.1007/s00220-004-1285-2 · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[8] DOI: 10.1007/s11005-004-5116-3 · Zbl 1115.81055 · doi:10.1007/s11005-004-5116-3
[9] DOI: 10.1007/s00220-005-1440-4 · Zbl 1109.81056 · doi:10.1007/s00220-005-1440-4
[10] DOI: 10.1007/s00220-006-0055-8 · Zbl 1113.81101 · doi:10.1007/s00220-006-0055-8
[11] DOI: 10.1007/s00220-007-0215-5 · Zbl 1156.81465 · doi:10.1007/s00220-007-0215-5
[12] DOI: 10.1007/978-3-7643-8522-4 · doi:10.1007/978-3-7643-8522-4
[13] DOI: 10.1016/S0370-2693(02)01650-7 · Zbl 0994.81116 · doi:10.1016/S0370-2693(02)01650-7
[14] Matusis A., J. High Energy Phys. 0012 pp 002–
[15] Connes A., Noncommutative Geometry (1994)
[16] DOI: 10.1007/s002200050126 · Zbl 0894.58007 · doi:10.1007/s002200050126
[17] DOI: 10.1007/s00220-004-1057-z · doi:10.1007/s00220-004-1057-z
[18] DOI: 10.1063/1.1855401 · Zbl 1067.58020 · doi:10.1063/1.1855401
[19] DOI: 10.1140/epjc/s10052-007-0335-2 · Zbl 1189.81215 · doi:10.1140/epjc/s10052-007-0335-2
[20] DOI: 10.1140/epjc/s10052-007-0369-5 · Zbl 1189.81217 · doi:10.1140/epjc/s10052-007-0369-5
[21] DOI: 10.1140/epjc/s10052-008-0652-0 · Zbl 1189.81214 · doi:10.1140/epjc/s10052-008-0652-0
[22] Montvay I., Quantum Field Theory on a Lattice (1997)
[23] Newman M. E., Monte Carlo Methods in Statistical Physics (2002)
[24] DOI: 10.1016/0920-5632(91)90120-4 · doi:10.1016/0920-5632(91)90120-4
[25] Martin X., J. High Energy Phys. 0404 pp 077–
[26] Dolan J. B. P., J. High Energy Phys. 0203 pp 013–
[27] Panero M., SIGMA 2 pp 081–
[28] Panero M., J. High Energy Phys. 0705 pp 082–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.