×

Unparticle self-interactions. (English) Zbl 1270.81198

Summary: We develop techniques for studying the effects of self-interactions in the conformal sector of an unparticle model. Their physics is encoded in the higher \(n\)-point functions of the conformal theory. We study inclusive processes and argue that the inclusive production of unparticle stuff in standard model processes due to the unparticle self-interactions can be decomposed using the conformal partial wave expansion and its generalizations into a sum over contributions from the production of various kinds of unparticle stuff, corresponding to different primary conformal operators. Such processes typically involve the production of unparticle stuff associated with operators other than those to which the standard model couples directly. Thus just as interactions between particles allow scattering processes to produce new particles in the final state, so unparticle self-interactions cause the production of various kinds of unparticle stuff. We discuss both inclusive and exclusive methods for computing these processes. The resulting picture, we believe, is a step towards understanding what unparticle stuff ”looks like” because it is quite analogous to way we describe the production and scattering of ordinary particles in quantum field theory, with the primary conformal operators playing the role of particles and the coefficients in the conformal partial wave expansion (and its generalization to include more fields) playing the role of amplitudes. We exemplify our methods in the 2D toy model that we discussed previously in which the Banks-Zaks theory is exactly solvable.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81V22 Unified quantum theories
81U35 Inelastic and multichannel quantum scattering

Software:

Mathematica

References:

[1] H. Georgi, Unparticle physics, Phys. Rev. Lett.98 (2007) 221601 [hep-ph/0703260] [SPIRES]. · doi:10.1103/PhysRevLett.98.221601
[2] H. Georgi, Another odd thing about unparticle physics, Phys. Lett.B 650 (2007) 275 [arXiv:0704.2457] [SPIRES].
[3] A.A. Belavin and A.A. Migdal, Calculation of anomalous dimensionalities in non-Abelian field gauge theories, Pisma Zh. Eksp. Teor. Fiz.19 (1974) 317 [JETP Lett.19 (1974) 181 [SPIRES].
[4] W.E. Caswell, Asymptotic behavior of nonabelian gauge theories to two loop order, Phys. Rev. Lett.33 (1974) 244 [SPIRES]. · doi:10.1103/PhysRevLett.33.244
[5] T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys.B 196 (1982) 189 [SPIRES]. · doi:10.1016/0550-3213(82)90035-9
[6] M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [SPIRES].
[7] B. Grinstein, K.A. Intriligator and I.Z. Rothstein, Comments on unparticles, Phys. Lett.B 662 (2008) 367 [arXiv:0801.1140] [SPIRES]. · Zbl 1282.81198
[8] N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys.B 435 (1995) 129 [hep-th/9411149] [SPIRES]. · Zbl 1020.81912 · doi:10.1016/0550-3213(94)00023-8
[9] P.J. Fox, A. Rajaraman and Y. Shirman, Bounds on unparticles from the Higgs sector, Phys. Rev.D 76 (2007) 075004 [arXiv:0705.3092] [SPIRES].
[10] Y. Nakayama, SUSY unparticle and conformal sequestering, Phys. Rev.D 76 (2007) 105009 [arXiv:0707.2451] [SPIRES].
[11] T.A. Ryttov and F. Sannino, Conformal windows of SU(N) gauge theories, higher dimensional representations and the size of the unparticle world, Phys. Rev.D 76 (2007) 105004 [arXiv:0707.3166] [SPIRES].
[12] T.A. Ryttov and F. Sannino, Supersymmetry Inspired QCD β-function, Phys. Rev.D 78 (2008) 065001 [arXiv:0711.3745] [SPIRES].
[13] F. Sannino, Dynamical stabilization of the Fermi scale: phase diagram of strongly coupled theories for (minimal) walking technicolor and unparticles, arXiv:0804.0182 [SPIRES].
[14] J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys.B 303 (1988) 226 [SPIRES]. · doi:10.1016/0550-3213(88)90179-4
[15] D. Dorigoni and S. Rychkov, Scale invariance + unitarity ⇒ conformal invariance?, arXiv:0910.1087 [SPIRES].
[16] G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys.55 (1977) 1 [SPIRES]. · Zbl 0352.22012 · doi:10.1007/BF01613145
[17] I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal invariance in quantum field theory, Scuola Normale Superiore, Pisa Italy (1978). · Zbl 0438.22011
[18] D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP05 (2008) 012 [arXiv:0803.1467] [SPIRES]. · doi:10.1088/1126-6708/2008/05/012
[19] M. Bander, J.L. Feng, A. Rajaraman and Y. Shirman, Unparticles: scales and high energy probes, Phys. Rev.D 76 (2007) 115002 [arXiv:0706.2677] [SPIRES].
[20] T. Kikuchi and N. Okada, Unparticle physics and Higgs phenomenology, Phys. Lett.B 661 (2008) 360 [arXiv:0707.0893] [SPIRES]. · Zbl 1282.81200
[21] A. Delgado, J.R. Espinosa and M. Quirós, Unparticles-Higgs interplay, JHEP10 (2007) 094 [arXiv:0707.4309] [SPIRES]. · doi:10.1088/1126-6708/2007/10/094
[22] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [SPIRES]. · Zbl 0914.53047
[23] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [SPIRES]. · Zbl 1355.81126
[24] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [SPIRES]. · Zbl 0914.53048
[25] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [SPIRES]. · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[26] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [SPIRES]. · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[27] K. Cheung, W.-Y. Keung and T.-C. Yuan, Collider signals of unparticle physics, Phys. Rev. Lett.99 (2007) 051803 [arXiv:0704.2588] [SPIRES]. · doi:10.1103/PhysRevLett.99.051803
[28] Y. Liao, Bounds on unparticles couplings to electrons: from electron g-2 to positronium decays, Phys. Rev.D 76 (2007) 056006 [arXiv:0705.0837] [SPIRES].
[29] S. Zhou, Neutrino decays and neutrino electron elastic scattering in unparticle physics, Phys. Lett.B 659 (2008) 336 [arXiv:0706.0302] [SPIRES].
[30] G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/unparticle correspondence, JHEP02 (2009) 049 [arXiv:0804.0424] [SPIRES]. · Zbl 1245.81151 · doi:10.1088/1126-6708/2009/02/049
[31] M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP05 (2001) 064 [hep-th/0105048] [SPIRES]. · doi:10.1088/1126-6708/2001/05/064
[32] M. Pérez-Victoria, Unparticle physics with a few particles, JHEP01 (2009) 011 [arXiv:0808.4075] [SPIRES]. · doi:10.1088/1126-6708/2009/01/011
[33] C.M. Ho and Y. Nakayama, Unparticles and holographic renormalization group, JHEP05 (2009) 081 [arXiv:0903.0420] [SPIRES]. · doi:10.1088/1126-6708/2009/05/081
[34] A. Friedland, M. Giannotti and M. Graesser, On the RS2 realization of unparticles, Phys. Lett.B 678 (2009) 149 [arXiv:0902.3676] [SPIRES].
[35] G. Cacciapaglia, G. Marandella and J. Terning, Colored unparticles, JHEP01 (2008) 070 [arXiv:0708.0005] [SPIRES]. · doi:10.1088/1126-6708/2008/01/070
[36] Y. Liao, Some issues in a gauge model of unparticles, Eur. Phys. J.C 60 (2009) 125 [arXiv:0804.4033] [SPIRES]. · Zbl 1189.81149 · doi:10.1140/epjc/s10052-008-0861-6
[37] J. Galloway, J. McRaven and J. Terning, Anomalies, unparticles and Seiberg duality, Phys. Rev.D 80 (2009) 105017 [arXiv:0805.0799] [SPIRES].
[38] A.L. Licht and W.-Y. Keung, The gauged unparticle action, arXiv:0806.3596 [SPIRES].
[39] A. Ilderton, Unparticle actions and gauge invariance, Phys. Rev.D 79 (2009) 025014 [arXiv:0810.3916] [SPIRES].
[40] M.A. Stephanov, Deconstruction of unparticles, Phys. Rev.D 76 (2007) 035008 [arXiv:0705.3049] [SPIRES].
[41] D. Stancato and J. Terning, The unhiggs, JHEP11 (2009) 101 [arXiv:0807.3961] [SPIRES]. · doi:10.1088/1126-6708/2009/11/101
[42] A. Falkowski and M. Pérez-Victoria, Holographic unhiggs, Phys. Rev.D 79 (2009) 035005 [arXiv:0810.4940] [SPIRES].
[43] P. Kovtun and A. Ritz, Black holes and universality classes of critical points, Phys. Rev. Lett.100 (2008) 171606 [arXiv:0801.2785] [SPIRES]. · Zbl 1228.83072 · doi:10.1103/PhysRevLett.100.171606
[44] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett.95 (2005) 261602 [hep-ph/0501128] [SPIRES]. · doi:10.1103/PhysRevLett.95.261602
[45] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys.B 721 (2005) 79 [hep-ph/0501218] [SPIRES]. · Zbl 1128.81310
[46] S.S. Gubser, AdS/CFT and gravity, Phys. Rev.D 63 (2001) 084017 [hep-th/9912001] [SPIRES].
[47] N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP08 (2001) 017 [hep-th/0012148] [SPIRES]. · doi:10.1088/1126-6708/2001/08/017
[48] J.L. Feng, A. Rajaraman and H. Tu, Unparticle self-interactions and their collider implications, Phys. Rev.D 77 (2008) 075007 [arXiv:0801.1534] [SPIRES].
[49] P.H. Ginsparg, Applied conformal field theory, hep-th/9108028 [SPIRES]. · Zbl 0985.82500
[50] H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Ann. Phys.231 (1994) 311 [hep-th/9307010] [SPIRES]. · Zbl 0795.53073 · doi:10.1006/aphy.1994.1045
[51] E.S. Fradkin and M.Y. Palchik, Recent developments in conformal invariant quantum field theory, Phys. Rept.44 (1978) 249 [SPIRES] · doi:10.1016/0370-1573(78)90172-2
[52] E.S. Fradkin and M.Y. Palchik, New developments in D-dimensional conformal quantum field theory, Phys. Rept.300 (1998) 1 [SPIRES]. · doi:10.1016/S0370-1573(97)00085-9
[53] H. Georgi and Y. Kats, An unparticle example in 2D, Phys. Rev. Lett.101 (2008) 131603 [arXiv:0805.3953] [SPIRES]. · doi:10.1103/PhysRevLett.101.131603
[54] S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys.B 42 (1972) 281 [SPIRES]. · doi:10.1016/0550-3213(72)90480-4
[55] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys.B 49 (1972) 77 [SPIRES]. · doi:10.1016/0550-3213(72)90587-1
[56] V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator product expansion in Euclidean conformal quantum field theory, Phys. Rev.D 13 (1976) 887 [SPIRES].
[57] G. Mack, Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory, Commun. Math. Phys.53 (1977) 155 [SPIRES]. · doi:10.1007/BF01609130
[58] E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The operator product expansion of N = 4 SYM and the 4-point functions of supergravity, Nucl. Phys.B 589 (2000) 38 [hep-th/9911222] [SPIRES]. · Zbl 1060.81600 · doi:10.1016/S0550-3213(00)00523-X
[59] G. Arutyunov, S. Frolov and A.C. Petkou, Operator product expansion of the lowest weight CPOs in N = 4 SYM4 at strong coupling, Nucl. Phys.B 586 (2000) 547 [Erratum ibid.B 609 (2001) 539] [hep-th/0005182] [SPIRES]. · Zbl 1043.81709 · doi:10.1016/S0550-3213(00)00439-9
[60] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [SPIRES]. · Zbl 1097.81734 · doi:10.1016/S0550-3213(01)00013-X
[61] M. D’Eramo, L. Peliti and G. Parisi, Theoretical predictions for critical exponents at the λ-point of Bose liquids, Lett. Nuovo Cim.2 (1971) 878. · doi:10.1007/BF02774121
[62] D.E. Diaz and H. Dorn, On the AdS higher spin/O(N) vector model correspondence: degeneracy of the holographic image, JHEP07 (2006) 022 [hep-th/0603084] [SPIRES]. · doi:10.1088/1126-6708/2006/07/022
[63] C.M. Sommerfield, On the definition of currents and the action principle in field theories of one spatial dimension, Ann. Phys.26 (1964) 1. · Zbl 0129.43203 · doi:10.1016/0003-4916(64)90273-8
[64] L.S. Brown, Gauge invariance and mass in a two-dimensional model, Nuovo Cim.29 (1963) 617 [SPIRES]. · doi:10.1007/BF02827786
[65] W.E. Thirring and J.E. Wess, Solution of a field theoretical model in one space-one time dimension, Ann. Phys.27 (1964) 331. · Zbl 0131.44205 · doi:10.1016/0003-4916(64)90234-9
[66] D.A. Dubin and J. Tarski, Interactions of massless spinors in two dimensions, Ann. Phys.43 (1967) 263. · doi:10.1016/0003-4916(67)90152-2
[67] C.R. Hagen, Current definition and mass renormalization in a model field theory, Nuovo Cim.51A (1967) 1033. · doi:10.1007/BF02721770
[68] J.S. Schwinger, Gauge invariance and mass. II, Phys. Rev.128 (1962) 2425 [SPIRES]. · Zbl 0118.44001 · doi:10.1103/PhysRev.128.2425
[69] W.E. Thirring, A soluble relativistic field theory, Ann. Phys.3 (1958) 91 [SPIRES]. · Zbl 0078.44303 · doi:10.1016/0003-4916(58)90015-0
[70] K.G. Wilson, Operator product expansions and anomalous dimensions in the Thirring model, Phys. Rev.D 2 (1970) 1473 [SPIRES].
[71] H. Georgi, Energy-momentum tensors and scale invariance in the thirring model, Phys. Rev.D 2 (1970) 2908 [SPIRES].
[72] R. Roskies and F. Schaposnik, Comment on Fujikawa’s analysis applied to the Schwinger model, Phys. Rev.D 23 (1981) 558 [SPIRES].
[73] H. Georgi and J.M. Rawls, Anomalies of the axial-vector current in two dimensions, Phys. Rev.D 3 (1971) 874 [SPIRES].
[74] J.H. Lowenstein and J.A. Swieca, Quantum electrodynamics in two-dimensions, Ann. Phys.68 (1971) 172 [SPIRES]. · doi:10.1016/0003-4916(71)90246-6
[75] G. Segrè and W.I. Weisberger, Investigations in two-dimensional vector meson field theories, Phys. Rev.D 10 (1974) 1767 [SPIRES].
[76] C.R. Hagen, Unification of the soluble two-dimensional vector coupling models, Phys. Rev.D 55 (1997) 1021 [hep-th/9409038] [SPIRES].
[77] C.G. Callan Jr., R.F. Dashen and D.J. Gross, The structure of the gauge theory vacuum, Phys. Lett.B 63 (1976) 334 [SPIRES].
[78] S.R. Coleman, R. Jackiw and L. Susskind, Charge shielding and quark confinement in the massive Schwinger model, Ann. Phys.93 (1975) 267 [SPIRES]. · doi:10.1016/0003-4916(75)90212-2
[79] S.R. Coleman, More about the massive Schwinger model, Ann. Phys.101 (1976) 239 [SPIRES]. · doi:10.1016/0003-4916(76)90280-3
[80] S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys.31 (1973) 259 [SPIRES]. · Zbl 1125.81321 · doi:10.1007/BF01646487
[81] K.G. Wilson, Non-Lagrangian models of current algebra, Phys. Rev.179 (1969) 1499 [SPIRES]. · doi:10.1103/PhysRev.179.1499
[82] A. Casher, J.B. Kogut and L. Susskind, Vacuum polarization and the absence of free quarks, Phys. Rev.D 10 (1974) 732 [SPIRES].
[83] I.M. Gel’fand and G.E. Shilov, Generalized functions, volume 1, Academic Press, U.S.A. (1964). · Zbl 0115.33101
[84] A. Casher, J.B. Kogut and L. Susskind, Vacuum polarization and the quark parton puzzle, Phys. Rev. Lett.31 (1973) 792 [SPIRES]. · doi:10.1103/PhysRevLett.31.792
[85] A. Petkou, Conserved currents, consistency relations and operator product expansions in the conformally invariant O(N) vector model, Ann. Phys.249 (1996) 180 [hep-th/9410093] [SPIRES]. · Zbl 0873.47044 · doi:10.1006/aphy.1996.0068
[86] S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cim.2 (1971) 1363 [SPIRES]. · doi:10.1007/BF02770435
[87] S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Ann. Phys.76 (1973) 161 [SPIRES]. · doi:10.1016/0003-4916(73)90446-6
[88] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [SPIRES]. · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[89] M. Lüscher, Operator product expansions on the vacuum in conformal quantum field theory in two space-time dimensions, Commun. Math. Phys.50 (1976) 23 [SPIRES]. · doi:10.1007/BF01608553
[90] Wolfram Research Inc., Mathematica, version 6.0, Champaign IL U.S.A. (2007).
[91] K. Lang and W. Rühl, The critical O(N) σ-model at dimensions 2 < d < 4: a list of quasiprimary fields, Nucl. Phys.B 402 (1993) 573 [SPIRES]. · Zbl 1043.81616 · doi:10.1016/0550-3213(93)90119-A
[92] G.F. Dell-Antonio, Y. Frishman and D. Zwanziger, Thirring model in terms of currents: solution and light cone expansions, Phys. Rev.D 6 (1972) 988 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.