×

Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem. (English) Zbl 1307.65123

Summary: We consider in this paper the time-dependent two-phase Stefan problem and derive a posteriori error estimates and adaptive strategies for its conforming spatial and backward Euler temporal discretizations. Regularization of the enthalpy-temperature function and iterative linearization of the arising systems of nonlinear algebraic equations are considered. Our estimators yield a guaranteed and fully computable upper bound on the dual norm of the residual, as well as on the \( L^2(L^2)\) error of the temperature and the \( L^2(H^{-1})\) error of the enthalpy. Moreover, they allow us to distinguish the space, time, regularization, and linearization error components. An adaptive algorithm is proposed, which ensures computational savings through the online choice of a sufficient regularization parameter, a stopping criterion for the linearization iterations, local space mesh refinement, time step adjustment, and equilibration of the spatial and temporal errors. We also prove the efficiency of our estimate. Our analysis is quite general and is not focused on a specific choice of the space discretization and of the linearization. As an example, we apply it to the vertex-centered finite volume (finite element with mass lumping and quadrature) and Newton methods. Numerical results illustrate the effectiveness of our estimates and the performance of the adaptive algorithm.

MSC:

65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
80A22 Stefan problems, phase changes, etc.
35R25 Ill-posed problems for PDEs
35K55 Nonlinear parabolic equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Alt, Hans Wilhelm; Luckhaus, Stephan, Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 3, 311-341 (1983) · Zbl 0497.35049 · doi:10.1007/BF01176474
[2] Amiez, Genevi{\`e}ve; Gremaud, Pierre-Alain, On a numerical approach to Stefan-like problems, Numer. Math., 59, 1, 71-89 (1991) · Zbl 0731.65107 · doi:10.1007/BF01385771
[3] Andreianov, B.; Bendahmane, M.; Karlsen, K. H., Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations, J. Hyperbolic Differ. Equ., 7, 1, 1-67 (2010) · Zbl 1207.35020 · doi:10.1142/S0219891610002062
[4] Baughman, Lisa A.; Walkington, Noel J., Co-volume methods for degenerate parabolic problems, Numer. Math., 64, 1, 45-67 (1993) · Zbl 0797.65075 · doi:10.1007/BF01388680
[5] Bebendorf, M., A note on the Poincar\'e inequality for convex domains, Z. Anal. Anwendungen, 22, 4, 751-756 (2003) · Zbl 1057.26011 · doi:10.4171/ZAA/1170
[6] Beckett, G.; Mackenzie, J. A.; Robertson, M. L., A moving mesh finite element method for the solution of two-dimensional Stefan problems, J. Comput. Phys., 168, 2, 500-518 (2001) · Zbl 1040.65080 · doi:10.1006/jcph.2001.6721
[7] Benilan, Philippe; Wittbold, Petra, On mild and weak solutions of elliptic-parabolic problems, Adv. Differential Equations, 1, 6, 1053-1073 (1996) · Zbl 0858.35064
[8] Braess, Dietrich; Sch{\"o}berl, Joachim, Equilibrated residual error estimator for edge elements, Math. Comp., 77, 262, 651-672 (2008) · Zbl 1135.65041 · doi:10.1090/S0025-5718-07-02080-7
[9] Canc{\`“e}s, Cl{\`e}ment; Pop, Luliu Sorin; Vohral{\'”\i }k, Martin, An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp., 83, 153-188 (2014) · Zbl 1430.76369 · doi:10.1090/S0025-5718-2013-02723-8
[10] Cerm{\'a}k, Libor; Zl{\'a}mal, Milo{\v{s}}, Transformation of dependent variables and the finite element solution of nonlinear evolution equations, Internat. J. Numer. Methods Engrg., 15, 1, 31-40 (1980) · Zbl 0444.65078 · doi:10.1002/nme.1620150104
[11] Ciarlet, Philippe G., The Finite Element Method for Elliptic Problems, xix+530 pp. (1978), North-Holland Publishing Co.: Amsterdam:North-Holland Publishing Co. · Zbl 0999.65129
[12] Ciavaldini, J. F., Analyse num\'erique d’un probl\`“eme de Stefan \`a deux phases par une m\'”ethode d’\'el\'ements finis, SIAM J. Numer. Anal., 12, 464-487 (1975) · Zbl 0272.65101
[13] [Dest\textunderscoreMet\textunderscoreexpl\textunderscoreerr\textunderscoreCFE\textunderscore99] P. Destuynder and B. M\'etivet. \newblock Explicit error bounds in a conforming finite element method. \newblockMath. Comp., 68(228):1379-1396, 1999. · Zbl 0929.65095
[14] Dolej{\v{s}}{\'{\i }}, V{\'{\i }}t; Ern, Alexandre; Vohral{\'{\i }}k, Martin, A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems, SIAM J. Numer. Anal., 51, 2, 773-793 (2013) · Zbl 1278.65138 · doi:10.1137/110859282
[15] El Alaoui, Linda; Ern, Alexandre; Vohral{\'{\i }}k, Martin, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg., 200, 37-40, 2782-2795 (2011) · Zbl 1230.65118 · doi:10.1016/j.cma.2010.03.024
[16] Elliott, Charles M., On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem, IMA J. Numer. Anal., 1, 1, 115-125 (1981) · Zbl 0469.65042 · doi:10.1093/imanum/1.1.115
[17] Ern, Alexandre; Vohral{\'{\i }}k, Martin, Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids, C. R. Math. Acad. Sci. Paris, 347, 7-8, 441-444 (2009) · Zbl 1161.65085 · doi:10.1016/j.crma.2009.01.017
[18] Ern, Alexandre; Vohral{\'{\i }}k, Martin, A posteriori error estimation based on potential and flux reconstruction for the heat equation, SIAM J. Numer. Anal., 48, 1, 198-223 (2010) · Zbl 1215.65152 · doi:10.1137/090759008
[19] Ern, Alexandre; Vohral{\'i}k, Martin, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput., 35, 4, A1761-A1791 (2013) · Zbl 1362.65056 · doi:10.1137/120896918
[20] Eymard, Robert; Gallou{\"e}t, Thierry; Herbin, Rapha{\`e}le, Finite volume methods. Handbook of numerical analysis, Vol. VII, 713-1020 (2000), North-Holland: Amsterdam:North-Holland · Zbl 0981.65095
[21] Eymard, R.; Gallou{\`“e}t, T.; Hilhorst, D.; Na{\'”{\i }}t Slimane, Y., Finite volumes and nonlinear diffusion equations, RAIRO Mod\'el. Math. Anal. Num\'er., 32, 6, 747-761 (1998) · Zbl 0914.65101
[22] Friedman, Avner, The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133, 51-87 (1968) · Zbl 0162.41903
[23] Hilhorst, Danielle; Vohral{\'{\i }}k, Martin, A posteriori error estimates for combined finite volume-finite element discretizations of reactive transport equations on nonmatching grids, Comput. Methods Appl. Mech. Engrg., 200, 5-8, 597-613 (2011) · Zbl 1225.76212 · doi:10.1016/j.cma.2010.08.017
[24] J{\"a}ger, Willi; Ka{\v{c}}ur, Jozef, Solution of porous medium type systems by linear approximation schemes, Numer. Math., 60, 3, 407-427 (1991) · Zbl 0744.65060 · doi:10.1007/BF01385729
[25] Jerome, Joseph W.; Rose, Michael E., Error estimates for the multidimensional two-phase Stefan problem, Math. Comp., 39, 160, 377-414 (1982) · Zbl 0505.65060 · doi:10.2307/2007320
[26] Jir{\'a}nek, Pavel; Strako{\v{s}}, Zden{\v{e}}k; Vohral{\'{\i }}k, Martin, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32, 3, 1567-1590 (2010) · Zbl 1215.65168 · doi:10.1137/08073706X
[27] Kamenomostskaja, S. L., On Stefan’s problem, Mat. Sb. (N.S.), 53 (95), 489-514 (1961) · Zbl 0102.09301
[28] Kelley, C. T.; Rulla, Jim, Solution of the time discretized Stefan problem by Newton’s method, Nonlinear Anal., 14, 10, 851-872 (1990) · Zbl 0709.65107 · doi:10.1016/0362-546X(90)90025-C
[29] [Lad\textunderscorethese\textunderscore75] P. Ladev\`“eze. \newblockComparaison de mod\`eles de milieux continus. \newblockPh.D. thesis, Universit\'”e Pierre et Marie Curie (Paris 6), 1975.
[30] Luce, R.; Wohlmuth, B. I., A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal., 42, 4, 1394-1414 (electronic) (2004) · Zbl 1078.65097 · doi:10.1137/S0036142903433790
[31] Makridakis, Charalambos; Nochetto, Ricardo H., Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41, 4, 1585-1594 (2003) · Zbl 1052.65088 · doi:10.1137/S0036142902406314
[32] Meyer, Gunter H., Multidimensional Stefan problems, SIAM J. Numer. Anal., 10, 522-538 (1973) · Zbl 0256.65054
[33] Nochetto, Ricardo H., Error estimates for multidimensional singular parabolic problems, Japan J. Appl. Math., 4, 1, 111-138 (1987) · Zbl 0657.65132 · doi:10.1007/BF03167758
[34] Nochetto, R. H.; Paolini, M.; Verdi, C., An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates, Math. Comp., 57, 195, 73-108, S1-S11 (1991) · Zbl 0733.65087 · doi:10.2307/2938664
[35] Nochetto, R. H.; Paolini, M.; Verdi, C., An adaptive finite element method for two-phase Stefan problems in two space dimensions. II. Implementation and numerical experiments, SIAM J. Sci. Statist. Comput., 12, 5, 1207-1244 (1991) · Zbl 0733.65088 · doi:10.1137/0912065
[36] Nochetto, R. H.; Schmidt, A.; Verdi, C., A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp., 69, 229, 1-24 (2000) · Zbl 0942.65111 · doi:10.1090/S0025-5718-99-01097-2
[37] Nochetto, R. H.; Verdi, C., The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems, Numer. Funct. Anal. Optim., 9, 11-12, 1177-1192 (1987/88) · Zbl 0629.35116 · doi:10.1080/01630568808816279
[38] Otto, Felix, \(L^1\)-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations, 131, 1, 20-38 (1996) · Zbl 0862.35078 · doi:10.1006/jdeq.1996.0155
[39] Payne, L. E.; Weinberger, H. F., An optimal Poincar\'e inequality for convex domains, Arch. Rational Mech. Anal., 5, 286-292 (1960) (1960) · Zbl 0099.08402
[40] Picasso, M., An adaptive finite element algorithm for a two-dimensional stationary Stefan-like problem, Comput. Methods Appl. Mech. Engrg., 124, 3, 213-230 (1995) · Zbl 0945.65519 · doi:10.1016/0045-7825(95)00793-Z
[41] Picasso, Marco, Adaptive finite elements for a linear parabolic problem, Comput. Methods Appl. Mech. Engrg., 167, 3-4, 223-237 (1998) · Zbl 0935.65105 · doi:10.1016/S0045-7825(98)00121-2
[42] [Pop\textunderscoreSep\textunderscoreRadu\textunderscoreVil\textunderscoreest\textunderscoreFV\textunderscorePM\textunderscore10] I. S. Pop, M. Sep\'ulveda, F. A. Radu, and O. P. Vera Villagr\'an. \newblock Error estimates for the finite volume discretization for the porous medium equation. \newblockJ. Comput. Appl. Math., 234(7):2135-2142, 2010. · Zbl 1402.65093
[43] Prager, W.; Synge, J. L., Approximations in elasticity based on the concept of function space, Quart. Appl. Math., 5, 241-269 (1947) · Zbl 0029.23505
[44] Quarteroni, Alfio; Valli, Alberto, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics 23, xvi+543 pp. (1994), Springer-Verlag: Berlin:Springer-Verlag · Zbl 0803.65088
[45] Repin, Sergey, A Posteriori Estimates for Partial Differential Equations, Radon Series on Computational and Applied Mathematics 4, xii+316 pp. (2008), Walter de Gruyter GmbH & Co. KG, Berlin · Zbl 1162.65001 · doi:10.1515/9783110203042
[46] Verf{\"u}rth, R., A posteriori error estimates for nonlinear problems. \(L^r(0,T;L^\rho (\Omega ))\)-error estimates for finite element discretizations of parabolic equations, Math. Comp., 67, 224, 1335-1360 (1998) · Zbl 0907.65090 · doi:10.1090/S0025-5718-98-01011-4
[47] Verf{\"u}rth, R., A posteriori error estimates for nonlinear problems: \(L^r(0,T;W^{1,\rho }(\Omega ))\)-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations, 14, 4, 487-518 (1998) · Zbl 0974.65087 · doi:10.1002/(SICI)1098-2426(199807)14:\(4\langle
[48] Verf{\"u}rth, R., A posteriori error estimates for finite element discretizations of the heat equation, Calcolo, 40, 3, 195-212 (2003) · Zbl 1168.65418 · doi:10.1007/s10092-003-0073-2
[49] Verf{\"u}rth, R., Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM J. Numer. Anal., 43, 4, 1766-1782 (electronic) (2005) · Zbl 1099.65100 · doi:10.1137/040604261
[50] Vohral{\'{\i }}k, Martin, A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization, C. R. Math. Acad. Sci. Paris, 346, 11-12, 687-690 (2008) · Zbl 1142.65086 · doi:10.1016/j.crma.2008.03.006
[51] Vohral{\'{\i }}k, Martin, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput., 46, 3, 397-438 (2011) · Zbl 1270.65064 · doi:10.1007/s10915-010-9410-1
[52] [Whe\textunderscoreRich\textunderscore78] J. A. Wheeler, Permafrost design for the trans-Alaska, in P. T. Boggs, editor, Moving Boundary Problems, Academic Press, New York, 1978.
[53] Wheeler, Mary Fanett, A priori \(L_2\) error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10, 723-759 (1973) · Zbl 0232.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.