×

Transport scaling in porous media convection. (English) Zbl 07903528

Summary: We present a theory to describe the Nusselt number, \(Nu\), corresponding to the heat or mass flux, as a function of the Rayleigh-Darcy number, \(Ra\), the ratio of buoyant driving force over diffusive dissipation, in convective porous media flows. First, we derive exact relationships within the system for the kinetic energy and the thermal dissipation rate. Second, by segregating the thermal dissipation rate into contributions from the boundary layer and the bulk, which is inspired by the ideas of the Grossmann and Lohse theory (J. Fluid Mech., vol. 407, 2000; Phys. Rev. Lett., vol. 86, 2001), we derive the scaling relation for \(Nu\) as a function of \(Ra\) and provide a robust theoretical explanation for the empirical relations proposed in previous studies. Specifically, by incorporating the length scale of the flow structure into the theory, we demonstrate why heat or mass transport differs between two-dimensional and three-dimensional porous media convection. Our model is in excellent agreement with the data obtained from numerical simulations, affirming its validity and predictive capabilities.

MSC:

76-XX Fluid mechanics

References:

[1] Ahlers, G., Grossmann, S. & Lohse, D.2009Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys.81 (2), 503.
[2] Bader, S.H. & Zhu, X.2023Scaling relations in quasi-static magnetoconvection with a strong vertical magnetic field. J. Fluid Mech.976, A4.
[3] Bickle, M., Chadwick, A., Huppert, H.E., Hallworth, M. & Lyle, S.2007Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet. Sci. Lett.255 (1), 164-176.
[4] Chillà, F. & Schumacher, J.2012New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E35, 1-25.
[5] De Paoli, M.2021Influence of reservoir properties on the dynamics of a migrating current of carbon dioxide. Phys. Fluids33 (1), 016602.
[6] De Paoli, M.2023Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies. Eur. Phys. J. E46 (12), 129.
[7] De Paoli, M., Pirozzoli, S., Zonta, F. & Soldati, A.2022Strong Rayleigh-Darcy convection regime in three-dimensional porous media. J. Fluid Mech.943, A51. · Zbl 1494.76084
[8] De Paoli, M., Yerragolam, G.S., Lohse, D. & Verzicco, R.2024 A finite difference solver for numerical simulations of convective porous media flows (in preparation).
[9] De Paoli, M., Zonta, F. & Soldati, A.2016Influence of anisotropic permeability on convection in porous media: implications for geological \({\rm CO}_2\) sequestration. Phys. Fluids28 (5), 056601.
[10] De Paoli, M., Zonta, F. & Soldati, A.2017Dissolution in anisotropic porous media: modelling convection regimes from onset to shutdown. Phys Fluids29 (2), 026601.
[11] Dentz, M., Hidalgo, J.J. & Lester, D.2023Mixing in porous media: concepts and approaches across scales. Transp. Porous Med.146 (1-2), 5-53.
[12] Doering, C.R. & Constantin, P.1998Bounds for heat transport in a porous layer. J. Fluid Mech.376, 263-296. · Zbl 0933.76090
[13] Emami-Meybodi, H., Hassanzadeh, H., Green, C.P. & Ennis-King, J.2015Convective dissolution of \({\rm CO}_2\) in saline aquifers: progress in modeling and experiments. Intl J. Greenh. Gas Control40, 238-266.
[14] Ennis-King, J., Preston, I. & Paterson, L.2005Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids17 (8), 084107. · Zbl 1187.76141
[15] Graham, M.D. & Steen, P.H.1994Plume formation and resonant bifurcations in porous-media convection. J. Fluid Mech.272, 67-90. · Zbl 0925.76735
[16] Grossmann, S. & Lohse, D.2000Scaling in thermal convection: a unifying theory. J. Fluid Mech.407, 27-56. · Zbl 0972.76045
[17] Grossmann, S. & Lohse, D.2001Thermal convection for large Prandtl numbers. Phys. Rev. Lett.86 (15), 3316.
[18] Guo, R., Sun, H., Zhao, Q., Li, Z., Liu, Y. & Chen, C.2021A novel experimental study on density-driven instability and convective dissolution in porous media. Geophys. Res. Lett.48 (23), e2021GL095619.
[19] Hassanzadeh, P., Chini, G.P. & Doering, C.R.2014Wall to wall optimal transport. J. Fluid Mech.751, 627-662. · Zbl 1329.74253
[20] Hewitt, D.R.2020Vigorous convection in porous media. Proc. Math. Phys. Engng Sci.476 (2239), 20200111. · Zbl 1472.76094
[21] Hewitt, D.R. & Lister, J.R.2017Stability of three-dimensional columnar convection in a porous medium. J. Fluid Mech.829, 89-111. · Zbl 1460.76753
[22] Hewitt, D.R., Neufeld, J.A. & Lister, J.R.2012Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett.108 (22), 224503.
[23] Hewitt, D.R., Neufeld, J.A. & Lister, J.R.2013aConvective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech.719, 551-586. · Zbl 1284.76344
[24] Hewitt, D.R., Neufeld, J.A. & Lister, J.R.2013bStability of columnar convection in a porous medium. J. Fluid Mech.737, 205-231. · Zbl 1294.76121
[25] Hewitt, D.R., Neufeld, J.A. & Lister, J.R.2014High Rayleigh number convection in a three-dimensional porous medium. J. Fluid Mech.748, 879-895.
[26] Hidalgo, J.J., Dentz, M., Cabeza, Y. & Carrera, J.2015Dissolution patterns and mixing dynamics in unstable reactive flow. Geophys. Res. Lett.42 (15), 6357-6364.
[27] Hidalgo, J.J., Fe, J., Cueto-Felgueroso, L. & Juanes, R.2012Scaling of convective mixing in porous media. Phys. Rev. Lett.109 (26), 264503.
[28] Howard, L.N.1966 Convection at high Rayleigh number. In Proceedings of the 11th International Congress of Applied Mechanics, pp. 1109-1115. Springer.
[29] Huppert, H.E. & Neufeld, J.A.2014The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech.46, 255-272. · Zbl 1297.76184
[30] Kraichnan, R.H.1962Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids5 (11), 1374-1389. · Zbl 0116.42803
[31] Letelier, J.A., Mujica, N. & Ortega, J.H.2019Perturbative corrections for the scaling of heat transport in a Hele-Shaw geometry and its application to geological vertical fractures. J. Fluid Mech.864, 746-767. · Zbl 1415.76606
[32] Letelier, J.A., Ulloa, H.N., Leyrer, J. & Ortega, J.H.2023Scaling \({\rm CO}_2\)-brine mixing in permeable media via analogue models. J. Fluid Mech.962, A8. · Zbl 1534.76083
[33] Liang, Y., Wen, B., Hesse, M.A. & Dicarlo, D.2018Effect of dispersion on solutal convection in porous media. Geophys. Res. Lett.45 (18), 9690-9698.
[34] Macminn, C.W., Neufeld, J.A., Hesse, M.A. & Huppert, H.E.2012Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resour. Res.48 (11).
[35] Malkus, W.V.R.1954Discrete transitions in turbulent convection. Proc. R. Soc. Lond. A225 (1161), 185-195.
[36] Otero, J., Dontcheva, L.A., Johnston, H., Worthing, R.A., Kurganov, A., Petrova, G. & Doering, C.R.2004High-Rayleigh number convection in a fluid-saturated porous layer. J. Fluid Mech.500, 263-281. · Zbl 1134.76462
[37] Pirozzoli, S., De Paoli, M., Zonta, F. & Soldati, A.2021Towards the ultimate regime in Rayleigh-Darcy convection. J. Fluid Mech.911, R4. · Zbl 1493.76093
[38] Priestley, C.H.B.1954Convection from a large horizontal surface. Austral. J. Phys.7 (1), 176-201. · Zbl 0058.45802
[39] Schrag, D.P.2007Preparing to capture carbon. Science315 (5813), 812-813.
[40] Simmons, C.T., Fenstemaker, T.R. & Sharp, J.M. Jr.2001Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J. Contam. Hydrol.52 (1-4), 245-275.
[41] Slim, A.C.2014Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech.741, 461-491.
[42] Song, J., Shishkina, O. & Zhu, X.2024Scaling regimes in rapidly rotating thermal convection at extreme Rayleigh numbers. J. Fluid Mech.984, A45.
[43] Spiegel, E.A.1963A generalization of the mixing-length theory of turbulent convection. Astrophys. J.138, 216. · Zbl 0128.20403
[44] Tsinober, A., Rosenzweig, R., Class, H., Helmig, R. & Shavit, U.2022The role of mixed convection and hydrodynamic dispersion during \({\rm CO}_2\) dissolution in saline aquifers: a numerical study. Water Resour. Res.58 (3), e2021WR030494.
[45] Tsinober, A., Shavit, U. & Rosenzweig, R.2023Numerical investigation of the influence of hydrodynamic dispersion on solutal natural convection. Water Resour. Res.59, e2023WR034475.
[46] Ulloa, H.N. & Letelier, J.A.2022Energetics and mixing of thermally driven flows in Hele-Shaw cells. J. Fluid Mech.930, A16. · Zbl 1521.76118
[47] Van Der Poel, E.P., Stevens, R.J.A.M. & Lohse, D.2013Comparison between two-and three-dimensional Rayleigh-Bénard convection. J. Fluid mech.736, 177-194. · Zbl 1294.76128
[48] Wen, B., Chang, K.W. & Hesse, M.A.2018Rayleigh-Darcy convection with hydrodynamic dispersion. Phys. Rev. Fluids3 (12), 123801.
[49] Wen, B., Corson, L.T. & Chini, G.P.2015Structure and stability of steady porous medium convection at large Rayleigh number. J. Fluid Mech.772, 197-224. · Zbl 1328.76070
[50] Wen, B., Dianati, N., Lunasin, E., Chini, G.P. & Doering, C.R.2012New upper bounds and reduced dynamical modeling for Rayleigh-Bénard convection in a fluid saturated porous layer. Commun. Nonlinear Sci. Numer. Simul.17 (5), 2191-2199.
[51] Xia, K.-Q., Huang, S.-D., Xie, Y.-C. & Zhang, L.2023Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence. Natl Sci. Rev.10 (6), nwad012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.