×

Gravity currents with residual trapping. (English) Zbl 1151.76596

Summary: Motivated by geological carbon dioxide (CO\(_{2})\) storage, we present a vertical-equilibrium sharp-interface model for the migration of immiscible gravity currents with constant residual trapping in a two-dimensional confined aquifer. The residual acts as a loss term that reduces the current volume continuously. In the limit of a horizontal aquifer, the interface shape is self-similar at early and at late times. The spreading of the current and the decay of its volume are governed by power-laws. At early times the exponent of the scaling law is independent of the residual, but at late times it decreases with increasing loss. Owing to the self-similar nature of the current the volume does not become zero, and the current continues to spread. In the hyperbolic limit, the leading edge of the current is given by a rarefaction and the trailing edge by a shock. In the presence of residual trapping, the current volume is reduced to zero in finite time. Expressions for the up-dip migration distance and the final migration time are obtained. Comparison with numerical results shows that the hyperbolic limit is a good approximation for currents with large mobility ratios even far from the hyperbolic limit. In gently sloping aquifers, the current evolution is divided into an initial near-parabolic stage, with power-law decrease of volume, and a later near-hyperbolic stage, characterized by a rapid decay of the plume volume. Our results suggest that the efficient residual trapping in dipping aquifers may allow CO\(_{2}\) storage in aquifers lacking structural closure, if CO\(_{2}\) is injected far enough from the outcrop of the aquifer.

MSC:

76S05 Flows in porous media; filtration; seepage
76T30 Three or more component flows
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] DOI: 10.1137/0149043 · Zbl 0669.76124 · doi:10.1137/0149043
[2] Leveque, Finite Volume Methods for Hyperbolic Problems (2002) · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[3] DOI: 10.1017/S0022112007007069 · Zbl 1141.76475 · doi:10.1017/S0022112007007069
[4] DOI: 10.1017/S0022112006009578 · Zbl 1090.76068 · doi:10.1017/S0022112006009578
[5] Saffman, Proc. R. Soc. Lond. 245 pp 312– (1958)
[6] DOI: 10.1017/S0022112005007494 · doi:10.1017/S0022112005007494
[7] DOI: 10.1063/1.2166388 · doi:10.1063/1.2166388
[8] DOI: 10.1016/0020-7225(83)90124-6 · Zbl 0511.76092 · doi:10.1016/0020-7225(83)90124-6
[9] DOI: 10.1029/2005WR004806 · doi:10.1029/2005WR004806
[10] DOI: 10.1016/S1750-5836(07)00091-6 · doi:10.1016/S1750-5836(07)00091-6
[11] DOI: 10.1002/aic.11157 · doi:10.1002/aic.11157
[12] DOI: 10.1017/S0022112095001431 · Zbl 0862.76078 · doi:10.1017/S0022112095001431
[13] DOI: 10.1063/1.2033911 · Zbl 1187.76141 · doi:10.1063/1.2033911
[14] DOI: 10.1016/0196-8904(93)90038-C · doi:10.1016/0196-8904(93)90038-C
[15] DOI: 10.1017/S0022112007004685 · Zbl 1119.76064 · doi:10.1017/S0022112007004685
[16] DOI: 10.1016/j.epsl.2006.12.013 · doi:10.1016/j.epsl.2006.12.013
[17] Hesse, Geochim. Cosmochim. Acta 71 pp A401– (2007)
[18] DOI: 10.1023/A:1006544629038 · doi:10.1023/A:1006544629038
[19] Bear, Dynamics of Fluids in Porous Media (1972) · Zbl 1191.76001
[20] Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (1996) · Zbl 0907.76002 · doi:10.1017/CBO9781107050242
[21] DOI: 10.1063/1.1775431 · Zbl 1187.76444 · doi:10.1063/1.1775431
[22] DOI: 10.1007/s11242-004-0670-9 · doi:10.1007/s11242-004-0670-9
[23] Metz, Special Report on Carbon Dioxide Capture and Storage (2006)
[24] DOI: 10.1017/S0022112005006713 · Zbl 1081.76512 · doi:10.1017/S0022112005006713
[25] DOI: 10.1017/S0022112092002520 · Zbl 0825.76146 · doi:10.1017/S0022112092002520
[26] Lindeberg, Energy Conserv. Manage. 38 pp SS229– (1997) · doi:10.1016/S0196-8904(96)00274-9
[27] DOI: 10.1007/BF01064674 · doi:10.1007/BF01064674
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.