×

Dissolution-driven convection in a heterogeneous porous medium. (English) Zbl 1415.76614

Summary: Motivated by subsurface carbon sequestration, an experimental investigation of dissolution-driven Rayleigh-Darcy convection using two miscible fluids in a Hele-Shaw cell is conducted. A thin horizontal layer of circular impermeable discs is inserted to create an environment with heterogeneous and anisotropic permeability. The Sherwood number that measures the convective mass transfer rate between two fluids at the interface is linked to different parameters of the disc layer, including the disc size, spacing, layer permeability and its relative height with respect to the fluid interface. It is surprising that the convective mass transfer rate in our configuration is dominated by the disc spacing, but almost independent of either the disc size or the mean permeability of the layer. To explain this dependence, the convective mass transfer rate is decomposed into the number, velocity and density contrast of fingers travelling through the disc layer. Both the number and density contrast of fingers show dependences on the disc layer permeability, even though the product of them, the mass transfer rate, does not. In addition, the density contrast also shows a non-monotonic dependence on the disc spacing. The transition point is at a spacing that is close to the finger width. Based on this observation, a simple model based on mixing and scale competition is proposed, and it shows an excellent agreement with the experimental results.

MSC:

76S05 Flows in porous media; filtration; seepage
76R10 Free convection
Full Text: DOI

References:

[1] Agartan, E.; Trevisan, L.; Cihan, A.; Birkholzer, J.; Zhou, Q.; Illangasekare, T. H., Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO_{2}, Water Resour. Res., 51, 3, 1635-1648, (2015) · doi:10.1002/2014WR015778
[2] Backhaus, S.; Turitsyn, K.; Ecke, R. E., Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry, Phys. Rev. Lett., 106, 10, (2011) · doi:10.1103/PhysRevLett.106.104501
[3] Cavanagh, A. J.; Haszeldine, R. S., The Sleipner storage site: capillary flow modeling of a layered CO_{2} plume requires fractured shale barriers within the Utsira Formation, Intl J. Greenh. Gas Control, 21, 101-112, (2014) · doi:10.1016/j.ijggc.2013.11.017
[4] Cheng, P.; Bestehorn, M.; Firoozabadi, A., Effect of permeability anisotropy on buoyancy-driven flow for CO_{2} sequestration in saline aquifers, Water Resour. Res., 48, 9, (2012)
[5] Ecke, R. E.; Backhaus, S., Plume dynamics in Hele-Shaw porous media convection, Phil. Trans. R. Soc. Lond. A, 374, 2078, (2016)
[6] Elenius, M. T.; Johannsen, K., On the time scales of nonlinear instability in miscible displacement porous media flow, Comput. Geosci., 16, 4, 901-911, (2012) · doi:10.1007/s10596-012-9294-2
[7] Emami-Meybodi, H.; Hassanzadeh, H.; Green, C. P.; Ennis-King, J., Convective dissolution of CO_{2} in saline aquifers: progress in modeling and experiments, Intl J. Greenh. Gas Control, 40, 238-266, (2015) · doi:10.1016/j.ijggc.2015.04.003
[8] Ennis-King, J.; Preston, I.; Paterson, L., Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions, Phys. Fluids, 17, 8, (2005) · Zbl 1187.76141 · doi:10.1063/1.2033911
[9] Farajzadeh, R.; Meulenbroek, B.; Daniel, D.; Riaz, A.; Bruining, J., An empirical theory for gravitationally unstable flow in porous media, Comput. Geosci., 17, 3, 515-527, (2013) · Zbl 1392.76077 · doi:10.1007/s10596-012-9336-9
[10] Farajzadeh, R.; Ranganathan, P.; Zitha, P. L. J.; Bruining, J., The effect of heterogeneity on the character of density-driven natural convection of CO_{2} overlying a brine layer, Adv. Water Resour., 34, 3, 327-339, (2011) · doi:10.1016/j.advwatres.2010.12.012
[11] Foster, T. D., Stability of a homogeneous fluid cooled uniformly from above, Phys. Fluids, 8, 7, 1249-1257, (1965) · doi:10.1063/1.1761393
[12] Green, C. P.; Ennis-King, J., Steady dissolution rate due to convective mixing in anisotropic porous media, Adv. Water Resour., 73, 65-73, (2014) · doi:10.1016/j.advwatres.2014.07.002
[13] Hassanzadeh, H.; Pooladi-Darvish, M.; Keith, D. W., Scaling behavior of convective mixing, with application to geological storage of CO_{2}, AIChE J., 53, 5, 1121-1131, (2007) · doi:10.1002/aic.11157
[14] Hewitt, D. R.
[15] Hewitt, D. R.; Neufeld, J. A.; Lister, J. R., Ultimate regime of high Rayleigh number convection in a porous medium, Phys. Rev. Lett., 108, 22, (2012) · doi:10.1103/PhysRevLett.108.224503
[16] Hewitt, D. R.; Neufeld, J. A.; Lister, J. R., High Rayleigh number convection in a porous medium containing a thin low-permeability layer, J. Fluid Mech., 756, 844-869, (2014) · doi:10.1017/jfm.2014.478
[17] Hidalgo, J. J.; Carrera, J., Effect of dispersion on the onset of convection during CO_{2} sequestration, J. Fluid Mech., 640, 441-452, (2009) · Zbl 1183.76712 · doi:10.1017/S0022112009991480
[18] Hidalgo, J. J.; Fe, J.; Cueto-Felgueroso, L.; Juanes, R., Scaling of convective mixing in porous media, Phys. Rev. Lett., 109, 26, (2012) · doi:10.1103/PhysRevLett.109.264503
[19] Horton, C. W.; Rogers, F. T. Jr., Convection currents in a porous medium, J. Appl. Phys., 16, 6, 367-370, (1945) · Zbl 0063.02071 · doi:10.1063/1.1707601
[20] Hubel, A.; Bidault, N.; Hammer, B., Transport characteristics of glycerol and propylene glycol in an engineered dermal replacement, ASME 2002 International Mechanical Engineering Congress and Exposition, 121-122, (2002), American Society of Mechanical Engineers
[21] Huppert, H. E.; Neufeld, J. A., The fluid mechanics of carbon dioxide sequestration, Annu. Rev. Fluid Mech., 46, 255-272, (2014) · Zbl 1297.76184 · doi:10.1146/annurev-fluid-011212-140627
[22] Lapwood, E. R., Convection of a fluid in a porous medium, Mathematical Proceedings of the Cambridge Philosophical Society, 44, 508-521, (1948), Cambridge University Press · Zbl 0032.09203
[23] Macbeth, G.; Thompson, A. R., Densities and refractive indexes for propylene glycol-water solutions, Analyt. Chem., 23, 4, 618-619, (1951) · doi:10.1021/ac60052a019
[24] Mckibbin, R.; O’Sullivan, M. J., Onset of convection in a layered porous medium heated from below, J. Fluid Mech., 96, 2, 375-393, (1980) · Zbl 0427.76072 · doi:10.1017/S0022112080002170
[25] Mckibbin, R.; O’Sullivan, M. J., Heat transfer in a layered porous medium heated from below, J. Fluid Mech., 111, 141-173, (1981) · Zbl 0542.76114 · doi:10.1017/S0022112081002334
[26] Meybodi, H. E.; Hassanzadeh, H., Mixing induced by buoyancy-driven flows in porous media, AIChE J., 59, 4, 1378-1389, (2013) · doi:10.1002/aic.13891
[27] Neufeld, J. A.; Hesse, M. A.; Riaz, A.; Hallworth, M. A.; Tchelepi, H. A.; Huppert, H. E., Convective dissolution of carbon dioxide in saline aquifers, Geophys. Res. Lett., 37, 22, (2010) · doi:10.1029/2010GL044728
[28] Nield, D. A., The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation, J. Fluid Mech., 128, 37-46, (1983) · Zbl 0512.76101 · doi:10.1017/S0022112083000361
[29] Nield, D. A.; Bejan, A., Convection in Porous Media, 3, (2006), Springer · Zbl 1256.76004
[30] Otero, J.; Dontcheva, L. A.; Johnston, H.; Worthing, R. A.; Kurganov, A.; Petrova, G.; Doering, C. R., High-Rayleigh-number convection in a fluid-saturated porous layer, J. Fluid Mech., 500, 263-281, (2004) · Zbl 1134.76462 · doi:10.1017/S0022112003007298
[31] Pau, G. S. H.; Bell, J. B.; Pruess, K.; Almgren, A. S.; Lijewski, M. J.; Zhang, K., High-resolution simulation and characterization of density-driven flow in CO_{2} storage in saline aquifers, Adv. Water Resour., 33, 4, 443-455, (2010) · doi:10.1016/j.advwatres.2010.01.009
[32] Rahbari-Sisakht, M.; Taghizadeh, M.; Eliassi, A., Densities and viscosities of binary mixtures of poly(ethylene glycol) and poly(propylene glycol) in water and ethanol in the 293.15-338.15 K temperature range, J. Chem. Engng Data, 48, 5, 1221-1224, (2003) · doi:10.1021/je0301388
[33] Rapaka, S.; Pawar, R. J.; Stauffer, P. H.; Zhang, D.; Chen, S., Onset of convection over a transient base-state in anisotropic and layered porous media, J. Fluid Mech., 641, 227-244, (2009) · Zbl 1183.76716 · doi:10.1017/S0022112009991479
[34] Rees, D. A. S.; Bassom, A. P., The onset of Darcy-Bénard convection in an inclined layer heated from below, Acta Mechanica, 144, 1-2, 103-118, (2000) · Zbl 0958.76024 · doi:10.1007/BF01181831
[35] Rees, D. A. S.; Genç, G., The onset of convection in porous layers with multiple horizontal partitions, Intl J. Heat Mass Transfer, 54, 13-14, 3081-3089, (2011) · Zbl 1217.80083 · doi:10.1016/j.ijheatmasstransfer.2011.02.002
[36] Rees, D. A. S.; Riley, D. S., The three-dimensional stability of finite-amplitude convection in a layered porous medium heated from below, J. Fluid Mech., 211, 437-461, (1990) · Zbl 0686.76031 · doi:10.1017/S0022112090001641
[37] Settles, G. S., Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, (2012), Springer · Zbl 0987.76002
[38] Slim, A. C., Solutal-convection regimes in a two-dimensional porous medium, J. Fluid Mech., 741, 461-491, (2014) · doi:10.1017/jfm.2013.673
[39] Slim, A. C.; Ramakrishnan, T. S., Onset and cessation of time-dependent, dissolution-driven convection in porous media, Phys. Fluids, 22, 12, (2010) · doi:10.1063/1.3528009
[40] Szulczewski, M. L.; Hesse, M. A.; Juanes, R., Carbon dioxide dissolution in structural and stratigraphic traps, J. Fluid Mech., 736, 287-315, (2013) · Zbl 1294.76242 · doi:10.1017/jfm.2013.511
[41] Xu, X.; Chen, S.; Zhang, D., Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers, Adv. Water Resour., 29, 3, 397-407, (2006) · doi:10.1016/j.advwatres.2005.05.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.