×

The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous \(CO_{2}\). (English) Zbl 1320.76115

Summary: Carbon dioxide injected in an aquifer rises quickly to the top of the reservoir and forms a gas cap from where it diffuses into the underlying water layer. Transfer of the \(CO_{2}\) to the aqueous phase below is enhanced due to the high density of the carbon dioxide containing aqueous phase. This paper investigates the behavior of the diffusive interface in an enclosed space in which initially the upper part is filled with pure carbon dioxide and the lower part with liquid. Our analysis differs from a conventional analysis as we take the movement of the diffusive interface due to mass transfer and the composition dependent viscosity in the aqueous phase into account. The same formalism can also be used to describe the situation when an oil layer is underlying the gas cap. Therefore we prefer to call the lower phase the liquid phase. In this paper we include these two effects into the stability analysis of a diffusive interface between \(CO_{2}\) and a liquid in the gravity field. We identify the relevant bifurcation parameter as \(q =\epsilon Ra\), where \(\epsilon\) is the width of the interface. This implies the (well known) scaling of the critical time \(\sim Ra^{-2}\) and wavelength \(\sim Ra^{-1}\) (The critical time \(t_{c}\) and critical wavelength \(k_{c}\) are defined as follows: \(\sigma(k) \leq 0\;\forall t \leq t_{c}\); equality only holds for \(t = t_{c}\) and \(k = k_{c}\)). Inclusion of the interface upward movement leads to earlier destabilization of the system. Increasing viscosity for increasing \(CO_{2}\) concentration stabilizes the system. The theoretical results are compared to bulk flow visual experiments using the Schlieren technique to follow finger development in aquifer sequestration of \(CO_{2}\). In the appendix, we include a detailed derivation of the dispersion relation \(\sigma(k)\) in the Hele-Shaw case [C. T. Tan and G. M. Homsy, Phys. Fluids 29, 3549–3556 (1986; doi:10.1063/1.865832)] which is nowhere explicitly given.{
©2013 American Institute of Physics}

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI

References:

[1] Gmelin, L., Gmelins Handbuch der Anorganischen Chemie, System-Nr. 14: 8. Auflage. Kohlenstoff, Teil C3, Verbindungen. (1973)
[2] Lindeberg, E.; Wessel-Berg, D., Vertical convection in an aquifer column under a gas cap of \(CO_2\), Energy Convers. Manage., 38, S229-S234 (1997) · doi:10.1016/S0196-8904(96)00274-9
[3] Farajzadeh, R.; Ranganathan, P.; Zitha, P.; Bruining, J., The effect of heterogeneity on the character of density driven natural convection of \(CO_2\) overlying a brine layer, Adv. Water Resour., 34, 327-339 (2011) · doi:10.1016/j.advwatres.2010.12.012
[4] Farajzadeh, R.; Meulenbroek, B.; Daniel, D.; Riaz, A.; Bruining, J., An empirical theory for gravitationally unstable flow in porous media, Comput. Geosci., 17, 515-527 (2013) · Zbl 1392.76077 · doi:10.1007/s10596-012-9336-9
[5] Farajzadeh, R.; Salimi, H.; Zitha, P. L. J.; Bruining, H., Numerical simulation of density-driven natural convection in porous media with application for \(CO_2\) injection projects, Int. J. Heat Mass Transfer, 50, 5054-5064 (2007) · Zbl 1140.80323 · doi:10.1016/j.ijheatmasstransfer.2007.08.019
[6] Yang, Ch.; Gu, Y., Accelerated mass transfer of \(CO_2\) in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures, Ind. Eng. Chem. Res., 45, 2430-2436 (2006) · doi:10.1021/ie050497r
[7] Riaz, A.; Hesse, M.; Tchelepi, H. A.; Orr, F. M., Onset of convection in a gravitationally unstable diffusive boundary layer in porous media, J. Fluid Mech., 548, 87-111 (2006) · doi:10.1017/S0022112005007494
[8] Ennis-King, J.; Preston, I.; Paterson, L., Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions, Phys. Fluids, 17, 084107 (2005) · Zbl 1187.76141 · doi:10.1063/1.2033911
[9] Xu, X.; Chen, S.; Zhang, D., Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifiers, Adv. Water Resour., 29, 397-407 (2006) · doi:10.1016/j.advwatres.2005.05.008
[10] Haugen, K. B.; Firoozabadi, A., Composition at the interface between multi-component nonequilibrium fluid phases, J. Chem. Phys., 130, 064707 (2009) · doi:10.1063/1.3072793
[11] Farajzadeh, R.; Zitha, P. L. J.; Bruining, J., Enhanced mass transfer of \(CO_2\) into water: Experiment and modeling, Ind. Chem. Res., 48, 6423-6431 (2009) · doi:10.1021/ie801521u
[12] Tan, C. T.; Homsy, G. M., Stability of miscible displacements in porous media: Rectilinear flow, Phys. Fluids, 29, 3549-3556 (1986) · Zbl 0608.76087 · doi:10.1063/1.865832
[13] Rogerson, A.; Meiburg, E., Shear stabilization of miscible displacement processes in porous media, Phys. Fluids A, 5, 1344-1355 (1993) · Zbl 0795.76083 · doi:10.1063/1.858570
[14] Rapaka, S.; Chen, S.; Pawar, R. J.; Stauffer, P. H.; Zhang, D., Non-modal growth of perturbations in density-driven convection in porous media, J. Fluid Mech., 609, 285-303 (2008) · Zbl 1147.76030 · doi:10.1017/S0022112008002607
[15] Caltagirone, J-P, Stability of a saturated porous layer subject to a sudden rise in surface temperature: Comparison between the linear and energy methods, Q. J. Mech. Appl. Math., 33, 47-58 (1980) · Zbl 0423.73087 · doi:10.1093/qjmam/33.1.47
[16] Rees, D. A. S.; Selim, A.; Ennis-King, J. P., The instability of unsteady boundary layers in porous media, Emerging Topics in Heat and Mass Transfer in Porous Media, 85-110 (2008)
[17] Gardner, J. W.; Ypma, J. G. J., An investigation of phase-behavior macroscopic-bypassing interaction in CO2 flooding, SPEJ, 24, 508-520 (1984) · doi:10.2118/10686-PA
[18] Brinkman, H. C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., 1, 27-34 (1949) · Zbl 0041.54204 · doi:10.1007/BF02120313
[19] Zeng, J.; Yortsos, Y. C.; Salin, D., On the brinkman correction in unidirectional hele-shaw flows, Phys. Fluids, 15, 3829-3836 (2003) · Zbl 1186.76601 · doi:10.1063/1.1622947
[20] Fernandez, J.; Kurowski, P.; Limat, L.; Petitjeans, P., Wavelength selection of fingering instability inside hele-shaw cells, Phys. Fluids, 13, 3120-3125 (2001) · Zbl 1184.76160 · doi:10.1063/1.1410120
[21] Fernandez, J.; Kurowski, P.; Petitjeans, P.; Meiburg, E., Density-driven unstable flows of miscible fluids in a hele-shaw cell, J. Fluid Mech., 451, 239-260 (2002) · Zbl 1156.76311 · doi:10.1017/S0022112001006504
[22] Yortsos, Y. C.; Zeybek, M., Dispersion driven instability in miscible displacement in porous media, Phys. Fluids, 31, 3511-3518 (1988) · doi:10.1063/1.866918
[23] Bacri, J. C.; Rakotomalala, N.; Salin, D.; Woumeni, R., Miscible viscous fingering: Experiments versus continuum approach, Phys. Fluids A, 4, 1611-1619 (1992) · doi:10.1063/1.858383
[24] Martin, J.; Rakotomalala, N.; Salin, D., Gravitational instability of miscible fluid in a hele-shaw cell, Phys. Fluids, 14, 902-905 (2002) · Zbl 1184.76349 · doi:10.1063/1.1431245
[25] Elder, J. W., The unstable thermal interface, J. Fluid Mech., 32, 69-96 (1968) · doi:10.1017/S0022112068000595
[26] Foster, T. D., Stability of a homegeneous fluid cooled uniformly from above, Phys. Fluids, 8, 1249-1257 (1965) · doi:10.1063/1.1761393
[27] Gresho, P. M.; Sani, R. L., The stability of a fluid layer subjected to a step change in temperature: transient vs. frozen time analyses, Int. J. Heat Mass Transfer, 14, 207-221 (1971) · Zbl 0218.76053 · doi:10.1016/0017-9310(71)90090-1
[28] Kim, M. C.; Kim, K. Y.; Kim, S., The onset of transient convection in fluid-saturated porous layer heated uniformly from below, Int. Commun. Heat Mass Transfer, 31, 53-62 (2004) · doi:10.1016/S0735-1933(03)00201-X
[29] Kim, M. C., Onset of buoyancy driven convection in isotropic porous media heated from below, Korean J. Chem. Eng., 27, 741-747 (2010) · doi:10.1007/s11814-010-0149-z
[30] Barenblatt, G. I.; Entov, V. M.; Ryzhyk, V. M., Theory of Fluid Flows Through Natural Rocks (1990) · Zbl 0769.76001
[31] Mitlin, V. S., Nonlinear Dynamics of Reservoir Mixtures (1993)
[32] Farajzadeh, R. A.; Delil, H.; Zitha, P. L. J.; Bruining, H., Enhanced mass transfer of \(CO_2\) into water and oil by natural convection, Proceedings of Europec/EAGE Conference and Exhibition, 11-14 June 2007, London, UK (2007)
[33] Bando, S.; Takemura, F.; Nishio, M.; Hihara, E.; Akai, M., Viscosity of aqueous NaCl solutions with dissolved \(CO_2\) at (30 to 60) degrees C and (10 to 20) MPa, J. Chem. Eng. Data, 49, 1328-1332 (2004) · doi:10.1021/je049940f
[34] Mojaddamzadeh, A., \(CO_2\) sequestration: Visualization of natural convection flow of \(CO_2\) in water by Schlieren method (2009)
[35] Khosrokhavar, R.; Elsinga, G.; Mojaddamzadeh, A.; Farajzadeh, R.; Bruining, J., Visualization of natural convection flow of (sub) and (super) critical \(CO_2\) in aqueous and oleic systems by applying Schlieren method, Proceeding of Society of Petroleum Engineers SPE EUROPEC/EAGE Annual Conference and Exhibition held in Vienna, Austria, 23-26 May 2011 (2011)
[36] Settles, G. S., Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transperent Media (2001) · Zbl 0987.76002
[37] Chen, C-Y.; Meiburg, E., Miscible porous media displacements in the quarter five-spot configuration. Part 2. Effect of heterogeneities, J. Fluid Mech., 371, 269-299 (1998) · Zbl 0946.76093 · doi:10.1017/S0022112098002201
[38] Green, L. L.; Foster, T. D., Secondary convection in a hele shaw cell, J. Fluid Mech., 71, 675-691 (1975) · Zbl 0318.76031 · doi:10.1017/S0022112075002789
[39] Farajzadeh, R.; Barati, A.; Delil, H. A.; Bruining, J.; Zitha, P. L. J., Mass transfer of \(CO_2\) into water and surfactant solutions, Pet. Sci. Technol., 25, 1493-1511 (2007) · doi:10.1080/10916460701429498
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.