×

The impact of imperfect heat transfer on the convective instability of a thermal boundary layer in a porous media. (English) Zbl 1462.76180

Summary: We consider convective instability in a deep porous medium cooled from above with a linearised thermal exchange at the upper surface, thus determining the impact of using a Robin boundary condition, in contrast to previous studies using a Dirichlet boundary condition. With the linearised surface exchange, the thermal flux out of the porous layer depends linearly on the temperature difference between the effective temperature of a heat sink at the upper boundary and the temperature at the surface of the porous layer. The rate of this exchange is characterised by a dimensionless Biot number, \(\mathit{Bi}\), determined by the effective thermal conductivity of exchange with the heat sink relative to the physical thermal conductivity of the porous layer. For a given temperature difference between the heat sink at the upper boundary and deep in the porous medium, we find that imperfectly cooled layers with finite Biot numbers are more stable to convective instabilities than perfectly cooled layers which have large, effectively infinite Biot numbers. Two regimes of behaviour were determined with contrasting stability behaviour and characteristic scales. When the Biot number is large the near-perfect heat transfer produces small corrections of order \(1/\mathit{Bi}\) to the perfectly conducting behaviour found when the Biot number is infinite. In the insulating limit as the Biot number approaches zero, a different behaviour was found with significantly larger scales for the critical wavelength and depth of convection both scaling proportional to \(1/\sqrt{\mathit{Bi}}\).

MSC:

76S05 Flows in porous media; filtration; seepage
76E15 Absolute and convective instability and stability in hydrodynamic stability

Software:

Matlab

References:

[1] Barletta, A.; Storesletten, L., Onset of convective rolls in a circular porous duct with external heat transfer to a thermally stratified environment, Intl J. Therm. Sci., 50, 8, 1374-1384, (2011) · doi:10.1016/j.ijthermalsci.2011.03.010
[2] Barletta, A.; Storesletten, L., Onset of convection in a porous rectangular channel with external heat transfer to upper and lower fluid environments, Trans. Porous Med., 94, 3, 659-681, (2012) · doi:10.1007/s11242-012-0018-9
[3] Barletta, A.; Storesletten, L., Effect of a finite external heat transfer coefficient on the Darcy-Bénard instability in a vertical porous cylinder, Phys. Fluids, 25, 4, (2013)
[4] Barletta, A.; Tyvand, P. A.; Nygård, H. S., Onset of thermal convection in a porous layer with mixed boundary conditions, J. Engng Maths, 91, 1, 105-120, (2015) · Zbl 1398.76212 · doi:10.1007/s10665-014-9745-y
[5] Beckermann, C.; Gu, J. P.; Boettinger, W. J., Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings, Metall. Mater. Trans. A, 31A, 2545-2557, (2000) · doi:10.1007/s11661-000-0199-7
[6] Caltagirone, J.-P., Stability of a saturated porous layer subject to a sudden rise in surface temperature: comparison between the linear and energy methods, Q. J. Mech. Appl. Maths, 33, 1, 47-58, (1980) · Zbl 0423.73087 · doi:10.1093/qjmam/33.1.47
[7] Carslaw, H. S.; Jaeger, J. C., Conduction of Heat in Solids, (1959), Oxford University Press · Zbl 0972.80500
[8] Copley, S. M.; Giamei, A. F.; Johnson, S. M.; Hornbeck, M. F., Origin of freckles in unidirectionally solidified castings, Metall. Trans., 1, 2193-2204, (1970) · doi:10.1007/BF02643435
[9] Van Dam, R. L.; Simmons, C. T.; Hyndman, D. W.; Wood, W. W., Natural free convection in porous media: first field documentation in groundwater, Geophys. Res. Lett., 36, (2009) · doi:10.1029/2008GL036906
[10] Emami-Meybodi, H.; Hassanzadeh, H.; Green, C. P.; Ennis-King, J., Convective dissolution of \(\text{CO}_2\) in saline aquifers: progress in modeling and experiments, Intl J. Greenh. Gas Control, 40, 238-266, (2015) · doi:10.1016/j.ijggc.2015.04.003
[11] Emms, P. W.; Fowler, A. C., Compositional convection in the solidification of binary alloys, J. Fluid Mech., 262, 111-139, (1994) · Zbl 0815.76079 · doi:10.1017/S0022112094000443
[12] Ennis-King, J.; Preston, I.; Paterson, L., Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions, Phys. Fluids, 17, (2005) · Zbl 1187.76141 · doi:10.1063/1.2033911
[13] Hassanzadeh, H.; Pooladi-Darvish, M.; Keith, D. W., Stability of a fluid in a horizontal saturated porous layer: effect of non-linear concentration profile, initial, and boundary conditions, Trans. Porous Med., 65, 193-221, (2006) · doi:10.1007/s11242-005-6088-1
[14] Hurle, D. T. J.; Jakeman, E.; Pike, E. R., On the solution of the Bénard problem with boundaries of finite conductivity, Proc. R. Soc. Lond. A, 296, 1447, 469-475, (1967) · doi:10.1098/rspa.1967.0039
[15] Hwang, I. G.; Chung, C. K., Onset of convection in a porous mush during binary solidification, Korean J. Chem. Engng, 25, 2, 199-202, (2008) · doi:10.1007/s11814-008-0036-z
[16] Kim, M. C.; Choi, C. K., Linear stability analysis on the onset of buoyancy-driven convection in liquid-saturated porous medium, Phys. Fluids, 24, (2012)
[17] Kubitschek, J. P.; Weidman, P. D., Stability of a fluid-saturated porous medium heated from below by forced convection, Intl J. Heat Mass Transfer, 46, 19, 3697-3705, (2003) · Zbl 1039.76017 · doi:10.1016/S0017-9310(03)00168-6
[18] Maykut, G. A., Energy exchange over young sea ice in the central Arctic, J. Geophys. Res., 83, C7, 3646-3658, (1978) · doi:10.1029/JC083iC07p03646
[19] Nield, D. A.; Bejan, A., Convection in Porous Media, (2013), Springer · Zbl 1268.76001 · doi:10.1007/978-1-4614-5541-7
[20] Nygård, H. S.; Tyvand, P. A., Onset of convection in a porous box with partly conducting and partly penetrative sidewalls, Trans. Porous Med., 84, 1, 55-73, (2010) · doi:10.1007/s11242-009-9484-0
[21] Rees, D. A. S., Selim, A. & Ennis-King, J. P.2008The instability of unsteady boundary layers in porous media. In Emerging Topics in Heat and Mass Transfer in Porous Media (ed. Vadász, P.), , vol. 22, pp. 85-110. Springer. doi:10.1007/978-1-4020-8178-1_4
[22] Riaz, A.; Hesse, M.; Tchelepi, H. A.; Orr, F. M., Onset of convection in a gravitationally unstable diffusive boundary layer in porous media, J. Fluid Mech., 548, 87-111, (2006) · doi:10.1017/S0022112005007494
[23] Slim, A. C.; Ramakrishnan, T. S., Onset and cessation of time-dependent, dissolution-driven convection in porous media, Phys. Fluids, 22, (2010) · doi:10.1063/1.3528009
[24] Tilton, N.; Daniel, D.; Riaz, A., The initial transient period of gravitationally unstable diffusive boundary layers developing in porous media, Phys. Fluids, 25, (2013) · doi:10.1063/1.4821225
[25] Tilton, N.; Riaz, A., Nonlinear stability of gravitationally unstable, transient, diffusive boundary layers in porous media, J. Fluid Mech., 745, 251-278, (2014) · doi:10.1017/jfm.2014.72
[26] Trefethen, L. N., Spectral Methods in MATLAB, (2000), SIAM · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[27] Wells, A. J.; Wettlaufer, J. S.; Orszag, S. A., Brine fluxes from growing sea ice, Geophys. Res. Lett., 38, (2011) · doi:10.1029/2010GL046288
[28] Wettlaufer, J. S.; Worster, M. G.; Huppert, H. E., Solidification of leads: theory, experiment and field observations, J. Geophys. Res., 105, 1123-1134, (2000) · doi:10.1029/1999JC900269
[29] Wilkes, K. E., Onset of natural convection in a horizontal porous medium with mixed thermal boundary conditions, Trans. ASME J. Heat Transfer, 117, 543-547, (1995) · doi:10.1115/1.2822564
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.