×

Computing gravity-driven viscous fingering in complex subsurface geometries: a high-order discontinuous Galerkin approach. (English) Zbl 1382.86003

Summary: We present a formulation of the discontinuous Galerkin method aimed for simulations of gravity-driven viscous fingering instabilities occurring in porous media flow. Specifically, we are targeting applications characterized by complex geometrical features. Viscous fingering instabilities play a very important role in carbon sequestration in brine aquifers. The proposed method has the ability to preserve high order of accuracy on completely unstructured meshes, a feature that makes it ideal for high-fidelity computations of the challenging fingering flow patterns and very complex geometries of actual reservoirs and aquifers. An extensive set of numerical computations is also included, to confirm the stability, accuracy, and robustness of the method.

MSC:

86-08 Computational methods for problems pertaining to geophysics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749-1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[2] Brezzi, F., Marini, L.D., Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14, 1893-1903 (2004) · Zbl 1070.65117 · doi:10.1142/S0218202504003866
[3] Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[4] Ennis-King, J.P., Preston, I., Paterson, L.: Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Soc. Pet. Eng. J. 17, 349-356 (2005) · Zbl 1187.76141
[5] Girault, V., Sun, S., Wheeler, M.F., Yotov, I.: Coupling discontinuous Galerkin and mixed finite element discretizations using mortar finite elements. SIAM J. Numer. Anal. 46, 949-979 (2008) · Zbl 1165.65075 · doi:10.1137/060671620
[6] Gounot, J., Caltagirone, J.P.: Stabilité et convection naturelle au sein d’une couche poreuse non homogène. Int. J. Heat Mass Transfer 32, 1131-1140 (1989) · Zbl 0673.76097 · doi:10.1016/0017-9310(89)90012-4
[7] Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods Algorithms, Analysis, and Applications. Springer, New York (2008) · Zbl 1134.65068
[8] Hidalgo, J.J., Carrera, J.: Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 441-452 (2009) · Zbl 1183.76712 · doi:10.1017/S0022112009991480
[9] Hidalgo, J.J., Carrera, J., Medina, A.: Role of salt sources in density-dependent flow. Water Resour. Res. 45, W05503 (2009) · doi:10.1029/2008WR007679
[10] Hoteit, H., Firoozabadi, A.: Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media. Adv. Water Resour. 41, W11412 (2005)
[11] Jr., J.D., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Lecture Notes in Physics, vol. 58. Springer, Berlin (1976)
[12] Liu, R., Wheeler, M., Dawson, C., Dean, R.: Modeling of convection-dominated thermoporomechanics problems using incomplete interior penalty Galerkin method. Comput. Methods Appl. Mech. Eng. 198, 912-919 (2009) · Zbl 1229.76053 · doi:10.1016/j.cma.2008.11.012
[13] Liu, R., Wheeler, M., Dawson, C., Dean, R.: On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Methods Appl. Mech. Eng. 198, 3499-3510 (2009) · Zbl 1230.74189 · doi:10.1016/j.cma.2009.07.005
[14] Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K., Yang, C., Gu, Y.: High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33, 443-455 (2010) · doi:10.1016/j.advwatres.2010.01.009
[15] Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12, 417-435 (2008) · Zbl 1155.74048 · doi:10.1007/s10596-008-9082-1
[16] Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87-111 (2006) · doi:10.1017/S0022112005007494
[17] Rivière, B., Wheeler, M.F.: Discontinuous Galerkin methods for flow and transport problems in porous media. Commun. Numer. Methods Eng. 18, 63-68 (2002) · Zbl 0996.76056 · doi:10.1002/cnm.464
[18] Rivière, B., Wheeler, M.F., Banas, K.: Part II. Discontinuous Galerkin method applied to a single phase flow in porous media. Comput. Geosci. 4, 337-349 (2000) · Zbl 1049.76565 · doi:10.1023/A:1011546411957
[19] Rivière, B., Wheeler, M.F., Girault, V.: Elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152-161 (1978) · Zbl 0384.65058 · doi:10.1137/0715010
[20] Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3, 337-360 (1999) · Zbl 0951.65108 · doi:10.1023/A:1011591328604
[21] Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902-931 (2001) · Zbl 1010.65045 · doi:10.1137/S003614290037174X
[22] Scovazzi, G., Gerstenberger, A., Collis, S.: A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media. J. Comput. Phys. (2011). doi:10.1016/j.jcp.2012.09.003 · Zbl 1286.76152
[23] Siefert, C., Tuminaro, R., Gerstenberger, A., Scovazzi, G., Collis, S.S.: Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order. Comput. Geosci. (2012, submitted) · Zbl 1396.65151
[24] Sun, S., Wheeler, M.F.: Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport. Comput. Methods Appl. Mech. Eng. 195, 3382-3405 (2006) · Zbl 1175.76096 · doi:10.1016/j.cma.2005.06.019
[25] Sun, S., Wheeler, M.F.: Local problem-based a posteriori error estimators for discontinuous Galerkin approximations of reactive transport. Comput. Math. Appl. 52, 637-650 (2006) · Zbl 1129.65068 · doi:10.1016/j.camwa.2006.10.004
[26] Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for simulating bioreactive transport of viruses in porous media. Adv. Water Resour. 30, 1696-1710 (2007) · doi:10.1016/j.advwatres.2006.05.033
[27] Sun, S., Wheeler, M.F.: Local problem-based a posteriori error estimators for discontinuous Galerkin approximations of reactive transport. Comput. Geosci. 11, 87-101 (2007) · Zbl 1117.76061 · doi:10.1007/s10596-007-9041-2
[28] Sun, S.Y., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195-219 (2005) · Zbl 1086.76043 · doi:10.1137/S003614290241708X
[29] Sun, S.Y., Wheeler, M.F.: A posteriori error estimation and dynamic adaptivity for symmetric discontinuous Galerkin approximations of reactive transport problems. Comput. Methods Appl. Mech. Eng. 195, 632-652 (2006) · Zbl 1091.76040 · doi:10.1016/j.cma.2005.02.021
[30] Xu, X., Chen, S., Zhang, D.: Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. Water Resour. 29, 397-407 (2006) · doi:10.1016/j.advwatres.2005.05.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.