×

Linear stability analysis and nonlinear simulations of convective dissolution in an inclined porous layer between impermeable surfaces. (English) Zbl 07879615

MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations

Software:

PETSc; Matlab
Full Text: DOI

References:

[2] Huppert, H. E.; Neufeld, J. A., The fluid mechanics of carbon dioxide sequestration, Annu. Rev. Fluid Mech., 46, 255-272, 2014 · Zbl 1297.76184 · doi:10.1146/annurev-fluid-011212-140627
[3] Cheng, P.; Bestehorn, M.; Firoozabadi, A., Effect of permeability anisotropy on buoyancy-driven flow for CO \({}_2\) sequestration in saline aquifers, Water Resour. Res., 48, 9, W09539, 2012 · doi:10.1029/2011WR011799
[4] Ennis-King, J.; Paterson, L., Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations, Soc. Petrol. Eng., 10, 3, 8, 2003 · doi:10.2118/84344-MS
[5] Ennis-King, J.; Paterson, L., Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide, Int. J. Greenhouse Gas Control, 1, 1, 86-93, 2007 · doi:10.1016/S1750-5836(07)00034-5
[6] Ennis-King, J.; Preston, I.; Paterson, L., Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions, Phys. Fluids, 17, 084107, 2005 · Zbl 1187.76141 · doi:10.1063/1.2033911
[7] Ghesmat, K.; Hassanzadeh, H., The impact of geochemistry on convective mixing in a gravitationally unstable diffusive boundary layer in porous media: CO \({}_2\) storage in saline aquifers, J. Fluid Mech., 673, 480-512, 2011 · Zbl 1225.76131 · doi:10.1017/S0022112010006282
[8] Gunn, I.; Woods, A. W., On the flow of buoyant fluid injected into a confined, inclined aquifer, J. Fluid Mech., 672, 109-129, 2011 · Zbl 1225.76272 · doi:10.1017/S0022112010005896
[9] Gunn, I.; Woods, A. W., On the flow of buoyant fluid injected into an aquifer with a background flow, J. Fluid Mech., 706, 274-294, 2012 · Zbl 1275.76198 · doi:10.1017/jfm.2012.253
[10] Hesse, M. A.; Orr, F. M. Jr.; Tchelepi, H. A., Gravity currents with residual trapping, J. Fluid Mech., 611, 35-60, 2008 · Zbl 1151.76596 · doi:10.1017/S002211200800219X
[11] Loodts, V.; Rongy, L.; De Wit, A., Impact of pressure, salt concentration, and temperature on the convective dissolution of carbon dioxide in aqueous solutions, Chaos, 24, 043120, 2014 · doi:10.1063/1.4896974
[12] MacMinn, C. W.; Juanes, R., Buoyant currents arrested by convective dissolution, Geophys. Res. Lett., 40, 2017-2022, 2013 · doi:10.1002/grl.50473
[13] MacMinn, C. W.; Szulczewski, M. L.; Juanes, R., CO \({}_2\) migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow, J. Fluid Mech., 662, 329-351, 2010 · Zbl 1205.76255 · doi:10.1017/S0022112010003319
[14] MacMinn, C. W.; Szulczewski, M. L.; Juanes, R., CO \({}_2\) migration in saline aquifers. Part 2. Capillary and solubility trapping, J. Fluid Mech., 688, 321-351, 2011 · Zbl 1241.76367 · doi:10.1017/jfm.2011.379
[15] Meng, Q.; Jiang, X., Numerical analyses of the solubility trapping of CO \({}_2\) storage in geological formations, Appl. Energy, 130, 581-591, 2014 · doi:10.1016/j.apenergy.2014.01.037
[16] Slim, A. C., Solutal-convection regimes in a two-dimensional porous medium, J. Fluid Mech., 741, 461-491, 2014 · doi:10.1017/jfm.2013.673
[17] Slim, A. C.; Ramakrishnan, T. S., Onset and cessation of time-dependent, dissolution-driven convection in porous media, Phys. Fluids, 22, 12, 124103, 2010 · doi:10.1063/1.3528009
[18] Thomas, C.; Dehaeck, S.; De Wit, A., Convective dissolution of CO \({}_2\) in water and salt solutions, Int. J. Greenhouse Gas Control, 72, 105-116, 2018 · doi:10.1016/j.ijggc.2018.01.019
[19] Xu, X.; Chen, S.; Zhang, D., Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers, Adv. Water Resour., 29, 397-407, 2006 · doi:10.1016/j.advwatres.2005.05.008
[20] Zhang, Y.; Yang, G.; Li, S.-Q., Significance of conceptual model uncertainty in simulating carbon sequestration in a deep inclined saline aquifer, J. Hazard. Toxic Radioact. Waste, 19, 3, 04014036, 2015 · doi:10.1061/(ASCE)HZ.2153-5515.0000246
[21] Riaz, A.; Hesse, M.; Tchelepi, H. A.; Orr, F. M. Jr., Onset of convection in a gravitationally unstable diffusive boundary layer in porous media, J. Fluid Mech., 548, 87-111, 2006 · doi:10.1017/S0022112005007494
[22] Pau, G. S. H.; Bell, J. B.; Pruess, K.; Almgren, A. S.; Lijewski, M. J.; Zhang, K., High-resolution simulation and characterization of density-driven flow in CO \({}_2\) storage in saline aquifers, Adv. Water Resour., 33, 443-455, 2010 · doi:10.1016/j.advwatres.2010.01.009
[23] Cohen, C.; Berhanu, M.; Derr, J.; Courrech du Pont, S., Buoyancy-driven dissolution of inclined blocks: Erosion rate and pattern formation, Phys. Rev. Fluids, 5, 053802, 2020 · doi:10.1103/PhysRevFluids.5.053802
[24] Huppert, H. E.; Woods, A. W., Gravity-driven flows in porous layers, J. Fluid Mech., 292, 55-69, 1995 · Zbl 0862.76078 · doi:10.1017/S0022112095001431
[25] Vella, D.; Huppert, H. E., Gravity currents in a porous medium at an inclined plane, J. Fluid Mech., 555, 353-362, 2006 · Zbl 1090.76068 · doi:10.1017/S0022112006009578
[26] Guerrero, F. J.; Prol-Ledesma, R. M.; Karimi, N., Transient thermo-solutal convection in a tilted porous enclosure heated from below and salted from above, Int. Commun. Heat Mass Transfer, 118, 104875, 2020 · doi:10.1016/j.icheatmasstransfer.2020.104875
[27] Tsai, P. A.; Riesing, K.; Stone, H. A., Density-driven convection enhanced by an inclined boundary: Implications for geological CO \({}_2\) storage, Phys. Rev. E, 87, 011003, 2013 · doi:10.1103/PhysRevE.87.011003
[28] Wen, B.; Chini, G. P., Inclined porous medium convection at large Rayleigh number, J. Fluid Mech., 837, 670-702, 2018 · Zbl 1419.76623 · doi:10.1017/jfm.2017.863
[29] Wen, B.; Chini, G. P., On moderate-Rayleigh-number convection in an inclined porous layer, Fluids, 4, 2, 101, 2019 · doi:10.3390/fluids4020101
[30] Hewitt, D. R., Vigorous convection in porous media, Proc. R. Soc. A, 476, 2239, 20200111, 2020 · Zbl 1472.76094 · doi:10.1098/rspa.2020.0111
[31] Emami-Meybodi, H.; Hassanzadeh, H.; Ennis-King, J., CO \({}_2\) dissolution in the presence of background flow of deep saline aquifers, Water Resour. Res., 51, 4, 2595-2615, 2015 · doi:10.1002/2014WR016659
[32] Lucena, R. M.
[33] Budroni, M. A.; Riolfo, L. A.; Lemaigre, L.; Rossi, F.; Rustici, M.; De Wit, A., Chemical control of hydrodynamics instabilities in partially miscible two-layer systems, J. Phys. Chem. Lett., 5, 875-881, 2014 · doi:10.1021/jz5000403
[34] Almarcha, C.; Trevelyan, P. M. J.; Grosfils, P.; De Wit, A., Chemically driven hydrodynamic instabilities, Phys. Rev. Lett., 104, 4, 044501, 2010 · doi:10.1103/PhysRevLett.104.044501
[35] De Paoli, M.; Zonta, F.; Soldati, A., Dissolution in anisotropic porous media: Modelling convection regimes from onset to shutdown, Phys. Fluids, 29, 2, 026601, 2017 · doi:10.1063/1.4975393
[36] De Paoli, M.; Zonta, F.; Soldati, A., Rayleigh-Taylor convective dissolution in confined porous media, Phys. Rev. Fluids, 4, 023502, 2019 · doi:10.1103/PhysRevFluids.4.023502
[37] De Wit, A., Miscible density fingering of chemical fronts in porous media: Nonlinear simulations, Phys. Fluids, 16, 1, 163-175, 2004 · Zbl 1186.76131 · doi:10.1063/1.1630576
[38] Nijjer, J. S.; Hewitt, D. R.; Neufeld, J. A., The dynamics of miscible viscous fingering from onset to shutdown, J. Fluid Mech., 837, 520-545, 2018 · Zbl 1419.76618 · doi:10.1017/jfm.2017.829
[39] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics, 1988, Springer-Verlag: Springer-Verlag, Berlin · Zbl 0658.76001
[40] Weber, J. E., Thermal convection in a tilted porous layer, Int. J. Heat Mass Transfer, 18, 3, 474-475, 1975 · doi:10.1016/0017-9310(75)90036-8
[41] Sen, M.; Vasseur, P.; Robillard, L., Parallel flow convection in a tilted two-dimensional porous layer heated from all sides, Phys. Fluids, 31, 12, 3480-3487, 1988 · doi:10.1063/1.866916
[42] Moya, S. L.; Ramos, E.; Sen, M., Numerical study of natural convection in a tilted rectangular porous material, Int. J. Heat Mass Transfer, 30, 4, 741-756, 1987 · doi:10.1016/0017-9310(87)90204-3
[43] Makinde, O. D., On the Chebyshev collocation spectral approach to stability of fluid flow in a porous medium, Int. J. Numer. Methods Fluids, 59, 7, 791-799, 2009 · Zbl 1156.76041 · doi:10.1002/fld.1847
[44] Shankar, B. M.; Kumar, J.; Shivakumara, I. S., Stability of natural convection in a vertical layer of Brinkman porous medium, Acta Mech., 228, 1, 1-19, 2016 · doi:10.1007/s00707-016-1690-6
[45] Trefethen, L. N., Spectral Methods in Matlab, 2000, SIAM: SIAM, New York · Zbl 0953.68643
[46] Boyd, J. P., The optimization of convergence for Chebyshev polynomial methods in an unbounded domain, J. Comput. Phys., 45, 43-79, 1982 · Zbl 0488.65035 · doi:10.1016/0021-9991(82)90102-4
[47] Grosch, C. E.; Orszag, S. A., Numerical solution of problems in unbounded regions: Coordinate transforms, J. Comput. Phys., 25, 273-295, 1977 · Zbl 0403.65050 · doi:10.1016/0021-9991(77)90102-4
[48] Maleki, M.; Hashim, I.; Abbasbandy, S., Analysis of IVPS and BVPS on semi-infinite domains via collocation methods, J. Appl. Math., 2012, 696574 · Zbl 1244.76067 · doi:10.1155/2012/696574
[49] Baltensperger, R., Improving the accuracy of the matrix differentiation method for arbitrary collocation points, Appl. Numer. Math., 33, 1-4, 143-149, 2000 · Zbl 0964.65021 · doi:10.1016/S0168-9274(99)00077-X
[50] Trevelyan, P. M. J.; Almarcha, C.; De Wit, A., Buoyancy-driven instabilities of miscible two-layer stratifications in porous media and Hele-Shaw cells, J. Fluid Mech., 670, 38-65, 2011 · Zbl 1225.76127 · doi:10.1017/S0022112010005008
[51] Hughes, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 1987, Prentice-Hall: Prentice-Hall, New Jersey · Zbl 0634.73056
[52] Office of Advanced Scientific Computing Research, PETSc Users Manual, revision 3.7 edition, April 2016.
[53] Hewitt, D. R.; Neufeld, J. A.; Lister, J. R., Convective shutdown in a porous medium at high Rayleigh number, J. Fluid Mech., 719, 551-586, 2013 · Zbl 1284.76344 · doi:10.1017/jfm.2013.23
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.