×

Spectral properties of helical turbulence. (English. Russian original) Zbl 1215.76038

Fluid Dyn. 44, No. 5, 658-666 (2009); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2009, No. 5, 33-44 (2009).
Summary: The spectral properties of homogeneous stationary turbulence excited by a force that introduces considerable helicity, along with energy, into the flow are considered. It is shown that helicity is transferred on the inertial range as a passive admixture and its spectrum obeys the “ -5/3” law much more accurately than the velocity fluctuation spectrum. The helicity is dissipated on the same scales as the energy, though the helicity transfer dynamics on the inertial range are different on the large and small scales. Numerical experiments are performed on the basis of a cascade model developed for describing helical turbulence.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
Full Text: DOI

References:

[1] H.K. Moffat, Magnetic Field Excitation in Electrically Conducting Fluids, Cambridge Univ. Press, London & New York (1978).
[2] A. Brissaud, U. Frisch, J. Leorat, A. Lesieur, and A. Mazure, ”Helicity Cascades in Fully Developed Isotropic Turbulence,” Phys. Fluids 16, 1366 (1973). · Zbl 0362.76098 · doi:10.1063/1.1694520
[3] Q. Chen, S. Chen, G. Eyink, and D. Holm, ”Intermittency in the Joint Cascade of Energy and Helicity,” Phys. Rev. Letters 90, 214503 (2003). · doi:10.1103/PhysRevLett.90.214503
[4] B.M. Koprov, V.M. Koprov, V.M. Ponomarev, and O.G. Chkhetiani, ”Measuring Helical Turbulence and its Spectrum in the Atmospheric Boundary Layer,” Dokl. Ross. Akad. Nauk 403, 627 (2005).
[5] P.D. Ditlevsen and P. Giuliani, ”Cascades in Helical Turbulence,” Phys. Rev. E 63(3), 036304.1 (2001). · Zbl 1184.76139 · doi:10.1103/PhysRevE.63.036304
[6] Q. Chen, S. Chen, and G. Eyink, ”The Joint Cascade of Energy and Helicity in Three-Dimensional Turbulence,” Phys. Fluids 15, 361 (2003). · Zbl 1185.76081 · doi:10.1063/1.1533070
[7] E. Golbraikh and S.S. Moiseev, ”Different Spectra Formation in Presence of Helical Transfer,” Phys. Letters A 305, 173 (2002). · doi:10.1016/S0375-9601(02)01452-4
[8] S. Kurien, M. Taylor, and T. Matsumoto, ”Cascade Time Scales for Energy and Helicity in Homogeneous Isotropic Turbulence,” Phys. Letters E 69(6), 066313.1 (2004).
[9] V.N. Desnyanskii and E.A. Novikov, ”Modeling Cascade Processes in Turbulent Flows,” Prikl. Mat. Mekh. 38, 507 (1974).
[10] E.B. Gledzer and A.A. Makarov, ”Construction of a Cascade Model of Two-Dimensional Turbulence,” Izv. Akad. Nauk SSSR. Fiz. Atmosfery Okeana 15, 899 (1979).
[11] T.L. Bell and M. Nelkin, ”Time-Dependent Scaling Relations and Cascade Models of Turbulence,” J. Fluid Mech. 88, 369 (1978). · Zbl 0394.76049 · doi:10.1017/S0022112078002165
[12] V.D. Zimin, ”Hierarchy Model of Turbulence,” Izv. Akad. Nauk SSSR. Fiz. Atmosfery Okeana 17, 1265 (1981).
[13] P.G. Frik, ”Hierarchy Model of Two-Dimensional Turbulence,” Magnit. Gidrodinam. No. 1, 60 (1983). · Zbl 0531.76065
[14] M.H. Jensen, G. Paladin, and A. Vulpiani, ”Intermittency in a Cascade Model for Three-Dimensional Turbulence,” Phys. Rev. A 43(2), 798 (1991). · doi:10.1103/PhysRevA.43.798
[15] D. Pisarenko, L. Biferale, D. Courvoisier, U. Frisch, and M. Vergassola, ”Further Results on Multifractality in Shell Models,” Phys. Fluids A 5, 2553 (1993). · Zbl 0799.76032 · doi:10.1063/1.858766
[16] P. Frick, B. Dubrulle, and A. Babiano, ”Scaling Properties of a Class of Shell Models,” Phys. Rev. E 51, 5582 (1995). · Zbl 0904.76033 · doi:10.1103/PhysRevE.51.5582
[17] L. Biferale, A. Lambert, R. Lima, and G. Paladin, ”Transition to Chaos in a Shell Model of Turbulence,” Physica D 80, 105 (1995). · Zbl 0899.76241 · doi:10.1016/0167-2789(95)90065-9
[18] M. Yamada and K. Ohkitani, ”The Constant of Motion and the Inertial Subrange Spectrum in Fully-Developed Model Turbulence,” Phys. Letters A 134(3), 165 (1988). · doi:10.1016/0375-9601(88)90813-4
[19] T. Bohr, M.H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach to Turbulence, Cambridge Univ. Press, Cambridge (1998). · Zbl 0933.76002
[20] P.G. Frik, Turbulence: Approaches and Models [in Russian], Institute of Computer Research, Moscow & Izhevsk (2003).
[21] V. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia, and D. Vandembroucq, ”Improved Shell Model of Turbulence,” Phys. Rev. E 58, 1811 (1998). · doi:10.1103/PhysRevE.58.1811
[22] P. Frick and D. Sokoloff, ”Cascade and Dynamo Action in a Shell Model of MHD Turbulence,” Phys. Rev. E 57, 4155 (1998). · doi:10.1103/PhysRevE.57.4155
[23] P. Frick, D. Sokoloff, and R. Stepanov, ”Large Small Scale Interactions and Quenching in {\(\alpha\)}2 Dynamo,” Phys. Rev. E 74, 066310.1 (2006). · doi:10.1103/PhysRevE.74.066310
[24] R. Benzi, L. Biferale, R.M. Kerr, and E. Trovatore, ”Helical Shell Models for Three-Dimensional Turbulence,” Phys. Rev. E 53, 3541 (1996). · doi:10.1103/PhysRevE.53.3541
[25] R.A. Stepanov, P.G. Frik, and A.V. Shestakov, ”Modeling Cascade Processes in Helical Turbulence,” in: 15th Winter School on Continuum Mechanics. Collection of Papers. Part 3 [in Russian], Perm (2007), p. 207.
[26] V. Zimin and F. Hussain, ”Wavelet Based Model for Small Scale Turbulence,” Phys. Fluids 7, 2925 (1995). · Zbl 1027.76581 · doi:10.1063/1.868669
[27] M. Melander, ”Helicity Caused Chaos in a Shell Model of Turbulence,” Phys. Rev. Letters 78, 1456 (1997). · doi:10.1103/PhysRevLett.78.1456
[28] O.G. Chkhetiani and E. Golbraikh, ”Helicity Spectra and Dissipation,” Phys. Letters A 372, 5603 (2008). · Zbl 1223.76140 · doi:10.1016/j.physleta.2008.06.079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.