×

Weak convergence of infinite-dimensional diffusions. (English) Zbl 0886.60005

The author considers a sequence of stochastic evolution equations \[ dX_n=\big( AX_n+f_n(t,X_n) \big) dt+\sigma_n(t,X_n) dW_n, \qquad n=0,1,2,\ldots, \] in an infinite-dimensional Hilbert space \(H\). Here \(W_n\) are (possibly cylindrical) Wiener processes in a Hilbert space \(Y\) with covariance operators \(Q_n\in L(Y)\), \(A\) is the infinitesimal generator of a compact semigroup \(S\) on \(H\), \(f_n : [0,T]\times H\to H\), and \(\sigma : [0,T]\times H\to L(Y,H)\). The author obtains sufficient conditions for the weak convergence of the martingale solutions \(X_n\) to \(X_0\) in \(C([0,T],H)\) as \(n\to\infty\). The conditions are given in terms of convergence of the corresponding initial distributions, coefficients \(f_n\) and \(\sigma_n\), and covariance operators \(Q_n\). Particular results are obtained in the cases, where \(S\) is an analytical semigroup and where all \(W_n\) are standard cylindrical Wiener processes. The results obtained are applied to equations with rapidly oscillating coefficients and to a particular stochastic parabolic equation.

MSC:

60B10 Convergence of probability measures
60J60 Diffusion processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] DOI: 10.2969/jmsj/03910093 · Zbl 0616.47032 · doi:10.2969/jmsj/03910093
[2] DOI: 10.1007/BF01292676 · Zbl 0794.60074 · doi:10.1007/BF01292676
[3] Chojnowska–Michalik A., Existence, uniqueness and invariant. Rneasures for stochast.ic sernilinear equations on Hilbert spaces (1994)
[4] DOI: 10.1017/CBO9780511666223 · doi:10.1017/CBO9780511666223
[5] DOI: 10.1016/0167-7152(93)90259-L · Zbl 0786.60089 · doi:10.1016/0167-7152(93)90259-L
[6] Gaarek D., Stochastics Stochastics Rep 46 pp 41– (1994)
[7] DOI: 10.1080/07362999408809346 · Zbl 0798.60064 · doi:10.1080/07362999408809346
[8] Gikhman I.I., Ukrain. Mat. Zh 4 pp 215– (1952)
[9] Goldys, B. On weak solutions of stochastic evolution equations with unbounded coefficients@Miniconference on probability and analysis. Proc. Centre Math. Appl. Austral. Nat. Univ. 1991, Sydney. Vol. 29, pp.387–394. Canberra: Austral. Nat. Univ.
[10] Heunis A.J., Stochastics 16 pp 157– (1986)
[11] Krasnosel’Ski M.A., Uspekhi Mat. Nauk 10 pp 147– (1955)
[12] Makhno S. Ya, Theory of Randoui Processes 126 pp 113–
[13] DOI: 10.1007/BF00994917 · Zbl 0810.60054 · doi:10.1007/BF00994917
[14] Tanabe H., Equations of evolution (1979) · Zbl 0417.35003
[15] Triebel H., Interpolation theory, function spaces, differential operators (1978) · Zbl 0387.46033
[16] Vrko[cddot] I., Math. Bohem 120 pp 91– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.