×

Stability for a family of equations generalizing the equation of \(p\)-Wright affine functions. (English) Zbl 1410.39044

Summary: We prove some general stability results for a family of equations, which generalizes the equation of \(p\)-Wright affine functions. In this way, we obtain some hyperstability properties for those equations, as well. We also provide some applications of those outcomes in proving inequalities characterizing the inner product spaces and stability of \(\ast\)-homomorphisms of \(C^\ast\)-algebras. The main tool in the proofs is a fixed point result in [the first author et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 17, 6728–6732 (2011; Zbl 1236.39022)].

MSC:

39B62 Functional inequalities, including subadditivity, convexity, etc.
39B72 Systems of functional equations and inequalities
39B82 Stability, separation, extension, and related topics for functional equations
47H10 Fixed-point theorems

Citations:

Zbl 1236.39022
Full Text: DOI

References:

[1] Brzdȩk, J.; Chudziak, J.; Páles, Z., A fixed point approach to stability of functional equations, Nonlinear Anal. - TMA, 74, 6728-6732 (2011) · Zbl 1236.39022
[2] Brillouët-Belluot, N.; Brzdȩk, J.; Ciepliński, K., On some recent developments in Ulam’s type stability, Abstr. Appl. Anal., 2012, 41 (2012) · Zbl 1259.39019
[3] Brzdȩk, J.; Cădariu, L.; Ciepliński, K., Fixed point theory and the Ulam stability, J. Funct. Spaces, 2014, 16 (2014) · Zbl 1314.39029
[4] Czerwik, S., Functional Equations and Inequalities in Several Variables (2002), World Scientific: World Scientific New Jersey · Zbl 1011.39019
[6] Jung, S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Series Springer Optimization and Its Applications 48 (2011), Springer · Zbl 1221.39038
[7] Daróczy, Z.; Lajkó, K.; Lovas, R. L.; Maksa, G.; Páles, Z., Functional equations involving means, Acta Math. Hung., 166, 79-87 (2007) · Zbl 1174.39006
[8] Brzdȩk, J., Stability of the equation of the \(p\)-Wright affine functions, Aequ. Math., 85, 3, 497-503 (2013) · Zbl 1272.39015
[9] Najati, A.; Park, C., Stability of homomorphisms and generalized derivations on Banach algebras, J. Inequal. Appl., 2009, 12 (2009) · Zbl 1187.39046
[10] Brzdȩk, J.; Ciepliński, K., A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. - TMA, 74, 6861-6867 (2011) · Zbl 1237.39022
[11] Batko, B.; Brzdȩk, J., A fixed point theorem and the Hyers-Ulam stability in Riesz spaces, Adv. Differ. Equ., 2013, 138, 12 (2013) · Zbl 1391.39031
[12] Brzdȩk, J., Hyperstability of the Cauchy equation on restricted domains, Acta Mathem. Hung., 141, 58-67 (2013) · Zbl 1313.39037
[13] Brzdȩk, J., A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc., 89, 1, 33-40 (2014) · Zbl 1290.39016
[14] Brzdȩk, J., Note on stability of the Cauchy equation - an answer to a problem of Th. M. Rassias, Carpath. J. Math., 30, 1, 47-54 (2014) · Zbl 1389.39047
[15] Cădariu, L., Generalized Ulam-Hyers stability results: a fixed point approach, (Rassias, T. M., Handbook of Functional Equations - Stability Theory. Handbook of Functional Equations - Stability Theory, Series Springer Optimization and Its Applications 96 (2014), Springer-Verlag: Springer-Verlag New York), 101-111 · Zbl 1314.39030
[16] Bahyrycz, A.; Piszczek, M., Hyperstability of the Jensen functional equation, Acta Math. Hung., 142, 2, 353-365 (2014) · Zbl 1299.39022
[17] Bahyrycz, A.; Brzdȩk, J.; Piszczek, M., On approximately \(p\)-Wright affine functions in ultrametric spaces, J. Funct. Spaces Appl., 2013, 7 (2013) · Zbl 1287.39016
[18] Bahyrycz, A.; Brzdȩk, J.; Piszczek, M.; Sikorska, J., Hyperstability of the Fréchet equation and a characterization of inner product spaces, J. Funct. Spaces Appl., 2013, 6 (2013) · Zbl 1287.39017
[19] Brzdȩk, J., Stability of additivity and fixed point methods, Fixed Point Theory Appl., 2013, 285, 9 (2013) · Zbl 1297.39026
[20] Piszczek, M., Remark on hyperstability of the general linear equation, Aequ. Math., 88, 1-2, 163-168 (2014) · Zbl 1304.39033
[21] Piszczek, M.; Szczawińska, J., Hyperstability of the drygas functional equation, J. Funct. Spaces Appl. 2013, 4 (2013) · Zbl 1272.39024
[22] Cădariu, L.; Găvruţa, L.; Găvruţa, P., Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., 2012, 10 (2012) · Zbl 1252.39030
[23] Baker, J. A., The stability of certain functional equations, Proc. AMS, 112, 3, 729-732 (1991) · Zbl 0735.39004
[24] Cădariu, L.; Radu, V., Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math., 4, 1, 1-7 (2003) · Zbl 1043.39010
[25] Cădariu, L.; Radu, V., Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl., 2008, 15 (2008) · Zbl 1146.39040
[26] Cădariu, L.; Radu, V., A general fixed point method for the stability of Cauchy functional equation, (Rassias, T. M.; Brzdȩk, J., Functional Equations in Mathematical Analysis. Functional Equations in Mathematical Analysis, Series Springer Optimization and Its Applications 52 (2011), Springer-Verlag: Springer-Verlag New York), 19-32 · Zbl 1252.39031
[27] Cădariu, L.; Radu, V., A general fixed point method for the stability of the monomial functional equation, Carpath. J. Math., 28, 1, 25-36 (2012) · Zbl 1265.39048
[28] Cădariu, L.; Găvruţa, L.; Găvruţa, P., Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discret. Math., 6, 126-139 (2012) · Zbl 1289.39054
[29] Ciepliński, K., Applications of fixed point theorems to the Hyers-Ulam stability of functional equations - a survey, Ann. Funct. Anal., 3, 1, 151-164 (2012) · Zbl 1252.39032
[30] Găvruţa, L., Matkowski contractions and Hyers-Ulam stability, Bul. Şt. Univ. Politehnica Timişoara Ser. Mat.-Fiz., 53, 67, 32-35 (2008) · Zbl 1240.39059
[31] Găvruţa, P.; Găvruţa, L., A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., 1, 2, 11-18 (2010) · Zbl 1281.39038
[32] Jung, S.-M.; Kim, T.-S., A fixed point approach to the stability of the cubic functional equation, Bol. Soc. Mat. Mexicana (3), Vol. 12, 51-57 (2006) · Zbl 1133.39028
[33] Jung, S.-M.; Kim, T.-S.; Lee, K.-S., A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc., 43, 3, 531-541 (2006) · Zbl 1113.39031
[34] Jung, S.-M., A fixed point approach to the stability of isometries, J. Math. Anal. Appl., 329, 2, 879-890 (2007) · Zbl 1153.39309
[35] Miheţ, D., The Hyers-Ulam stability for two functional equations in a single variable, Banach J. Math. Anal. Appl, 2, 1, 48-52 (2008) · Zbl 1143.39015
[36] Radu, V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4, 1, 91-96 (2003) · Zbl 1051.39031
[37] Maksa, G.; Páles, Z., Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyìregyháziensis, 17, 107-112 (2001) · Zbl 1004.39022
[38] Gselmann, E., Hyperstability of a functional equation, Acta Math. Hung., 124, 1-2, 179-188 (2009) · Zbl 1212.39044
[39] Brzdȩk, J., Remarks on hyperstability of the Cauchy functional equation, Aequ. Math., 86, 255-267 (2013) · Zbl 1303.39016
[40] Aczél, J.; Dhombres, J., Functional Equations in Several Variables (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0685.39006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.