×

Stability of the equation of \((p,q)\)-Wright functions. (English) Zbl 1363.39032

For a fixed pair \((p,q)\) of real or complex numbers \(p,q\), a \((p,q)\)-Wright function \(f\) mapping a real or comlex linear space into a semigroup is defined as a solution of the functional equation \[ f(px+qy)+f(qx+py)=f(x)+f(y).{(1)} \] The authors investigate the Hyers-Ulam stability of equation (1), and they give sufficient conditions for the stability of (1) with some classes of control functions. The discussion of the optimality of the bounding constants obtained, in some particular cases, are also presented.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
Full Text: DOI

References:

[1] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar., 142 (2014), 353-365, DOI:10.1007/s10474-013-0347-3. · Zbl 1299.39022
[2] J. Brzdȩk, J. Chudziak and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal., 74 (2011), 6728-6732. · Zbl 1236.39022
[3] J. Brzdȩk and K. Ciepliński, Hyperstability and superstability, Abstr. Appl. Anal., vol. 2013 (2013), Article ID 401756, 13 pages, DOI:10.1155/2013/401756. · Zbl 1293.39013
[4] Brzdȩk J.: Stability of the equation of the p-Wright affine functions. Aequationes Math., 85, 497-503 (2013) · Zbl 1272.39015 · doi:10.1007/s00010-012-0152-z
[5] Chudziak J.: Approximate solutions of the Gołaȩb-Schinzel functional equation. J. Approx. Theory, 136, 21-25 (2005) · Zbl 1083.39025 · doi:10.1016/j.jat.2005.04.011
[6] Z. Daróczy, K. Lajkó, R. L. Lovas, Gy. Maksa and Zs. Páles, Functional equations involving means, Acta Math. Hungar., 166 (2007), 79-87. · Zbl 1174.39006
[7] A. Gilányi and Zs. Páles, On Dinghas-type derivatives and convex functions of higher order, Real Anal. Exchange, 27 (2001/2002), 485-493. · Zbl 1049.26003
[8] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser (Boston, 1998). · Zbl 0907.39025
[9] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, vol. 48, Springer (New York- Dordrecht-Heidelberg-London, 2011). · Zbl 1221.39038
[10] Jung S.-M.: Hyers-Ulam-Rassias stability of Jensen’s equation and its application. Proc. Amer. Math. Soc., 126, 3137-3143 (1998) · Zbl 0909.39014 · doi:10.1090/S0002-9939-98-04680-2
[11] Gy. Maksa, K. Nikodem and Zs. Páles, Results on t-Wright convexity, C. R. Math. Rep. Acad. Sci. Canada, 13 (1991), 274-278. · Zbl 0749.26007
[12] Moszner Z.: On the stability of functional equations. Aequationes Math., 77, 33-88 (2009) · Zbl 1207.39044 · doi:10.1007/s00010-008-2945-7
[13] A. Najati and C. Park, Stability of homomorphisms and generalized derivations on Banach algebras, J. Inequal. Appl., vol. 2009 (2009), Article ID 595439, 12 pages, DOI:10.1155/2009/595439. · Zbl 1187.39046
[14] B. Paneah, A new approach to the stability of linear functional operators, Aequationes Math., 78 (2009), 45-61. · Zbl 1207.39046
[15] M. Piszczek, Remark on hyperstability of the general linear equation, Aequationes Math., 88 (2014), 163-168, DOI:10.1007/s00010-013-0214-x. · Zbl 1304.39033
[16] Sikorska J.: On a direct method for proving the Hyers-Ulam stability of functional equations. J. Math. Anal. Appl., 372, 99-109 (2010) · Zbl 1198.39039 · doi:10.1016/j.jmaa.2010.06.056
[17] Wright E.M.: An inequality for convex functions. Amer. Math. Monthly, 61, 620-622 (1954) · Zbl 0057.04801 · doi:10.2307/2307675
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.