×

Ice ripple formation at large Reynolds numbers. (English) Zbl 1250.76084

Summary: A free-surface-induced morphological instability is studied in the laminar regime at large Reynolds numbers (\(Re=1-10^3\)) and on sub-horizontal walls (\(\vartheta<30^{\circ}\)). We analytically and numerically develop the stability analysis of an inclined melting-freezing interface bounding a free-surface laminar flow. The complete solution of both the linearized flow field and the heat conservation equations allows the exact derivation of the upper and lower temperature gradients at the interface, as required by the Stefan condition, from which the dispersion relationship is obtained. The eigenstructure is obtained and discussed. Free-surface dynamics appears to be crucial for the triggering of upstream propagating ice ripples, which grow at the liquid-solid interface. The kinematic and the dynamic conditions play a key role in controlling the formation of the free-surface fluctuations; these latter induce a streamline distortion with an increment of the wall-normal velocities and a destabilizing phase shift in the net heat transfer to the interface. Three-dimensional effects appear to be crucial at high Reynolds numbers. The role of inertia forces, vorticity, and thermal boundary conditions are also discussed.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76T99 Multiphase and multicomponent flows
80A22 Stefan problems, phase changes, etc.

Software:

Eigtool
Full Text: DOI

References:

[1] DOI: 10.1002/aic.690250416 · doi:10.1002/aic.690250416
[2] Trefethen, Spectra and Pseudospectra (2005)
[3] Stefan, Ann. Phys. Chem. 42 pp 269– (1891) · doi:10.1002/andp.18912780206
[4] DOI: 10.1063/1.2335152 · Zbl 1185.76445 · doi:10.1063/1.2335152
[5] DOI: 10.1137/0915089 · Zbl 0811.65097 · doi:10.1137/0915089
[6] DOI: 10.1146/annurev-fluid-121108-145612 · Zbl 1213.86019 · doi:10.1146/annurev-fluid-121108-145612
[7] DOI: 10.1007/978-1-4613-0185-1 · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[8] DOI: 10.1146/annurev.fluid.38.050304.092139 · doi:10.1146/annurev.fluid.38.050304.092139
[9] DOI: 10.1029/WR011i004p00551 · doi:10.1029/WR011i004p00551
[10] Olsson, Stud. Appl. Maths 94 pp 183– (1995) · Zbl 0821.76025 · doi:10.1002/sapm1995942183
[11] DOI: 10.1103/PhysRevE.66.041202 · doi:10.1103/PhysRevE.66.041202
[12] DOI: 10.1017/S0022112009993910 · Zbl 1189.76701 · doi:10.1017/S0022112009993910
[13] DOI: 10.1063/1.2227050 · doi:10.1063/1.2227050
[14] Lock, The Growth and Decay of Ice (1990)
[15] DOI: 10.1029/2006GL027511 · doi:10.1029/2006GL027511
[16] Hutter, Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets (1983)
[17] DOI: 10.1017/S0022112068001837 · Zbl 0169.28501 · doi:10.1017/S0022112068001837
[18] DOI: 10.1017/CBO9780511524608 · doi:10.1017/CBO9780511524608
[19] DOI: 10.1017/S0022112080000791 · doi:10.1017/S0022112080000791
[20] DOI: 10.1115/1.3244467 · doi:10.1115/1.3244467
[21] DOI: 10.1029/2005RG000185 · doi:10.1029/2005RG000185
[22] DOI: 10.1007/s00162-011-0223-0 · Zbl 1291.76128 · doi:10.1007/s00162-011-0223-0
[23] DOI: 10.1016/j.jcp.2008.10.016 · Zbl 1330.76055 · doi:10.1016/j.jcp.2008.10.016
[24] DOI: 10.1016/S0301-9322(96)00053-5 · Zbl 1135.76364 · doi:10.1016/S0301-9322(96)00053-5
[25] DOI: 10.1130/0016-7606(1973)84&lt;251:SOSS&gt;2.0.CO;2 · doi:10.1130/0016-7606(1973)84<251:SOSS>2.0.CO;2
[26] DOI: 10.1017/S0022112074001625 · doi:10.1017/S0022112074001625
[27] DOI: 10.1017/S002211209900539X · Zbl 0989.76022 · doi:10.1017/S002211209900539X
[28] DOI: 10.1017/S0022112057000373 · Zbl 0078.18003 · doi:10.1017/S0022112057000373
[29] Exner, Über Die Wechselwirkung Zwischen Wasser und Geschiebe in Flüssen, vol. 14 pp 165– (1925) · JFM 52.1000.19
[30] DOI: 10.1063/1.1706737 · Zbl 0116.19102 · doi:10.1063/1.1706737
[31] Bender, Advanced Mathematical Methods for Scientists and Engineers (1978)
[32] Drazin, Hydrodynamic Stability (1981)
[33] Worster, Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (2000) · Zbl 0952.00020
[34] Batchelor, An Introduction to Fluid Mechanics (2000)
[35] DOI: 10.1017/S0022112009991790 · Zbl 1183.76731 · doi:10.1017/S0022112009991790
[36] DOI: 10.1017/S0022112092003562 · Zbl 0747.76054 · doi:10.1017/S0022112092003562
[37] Ashton, Proc. ASCE 98 pp 1603– (1972)
[38] DOI: 10.1063/1.1848731 · Zbl 1187.76103 · doi:10.1063/1.1848731
[39] DOI: 10.1016/S0167-2789(03)00242-2 · Zbl 1036.76019 · doi:10.1016/S0167-2789(03)00242-2
[40] Abramowitz, Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables (1965)
[41] DOI: 10.1080/00221680009498314 · doi:10.1080/00221680009498314
[42] DOI: 10.1002/aic.690270206 · doi:10.1002/aic.690270206
[43] Canuto, Spectral Methods. Fundamentals in Single Domains (2006)
[44] DOI: 10.1088/0169-5983/42/2/025508 · Zbl 1423.76054 · doi:10.1088/0169-5983/42/2/025508
[45] DOI: 10.1063/1.3644673 · doi:10.1063/1.3644673
[46] DOI: 10.1103/PhysRevE.68.021603 · doi:10.1103/PhysRevE.68.021603
[47] DOI: 10.1038/277281a0 · doi:10.1038/277281a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.