×

Pseudotransient continuation for combustion simulation with detailed reaction mechanisms. (English) Zbl 1382.65195

Summary: We study pseudotransient continuation \((\Psi\mathrm{tc})\) as a nonlinear solver for implicit discretizations of combustion problems with detailed chemical models. Detailed models produce extreme stiffness, nonlinearity, and a transient instability associated with ignition/extinction phenomena. These are challenges to traditional Newton methods that are well met by \(\Psi\mathrm{tc}\). We develop and study several adaptive \(\Psi\mathrm{tc}\) methods on autoignition problems, including detailed chemical mechanisms from hydrogen to n-heptane. Using a periodic reactor with repeated ignition/extinction events, we demonstrate the efficiency that \(\Psi\mathrm{tc}\) offers relative to traditional solution techniques. We compare the efficiency of physical time discretizations of the backward difference formula and implicit Runge-Kutta types, as well as their numerical convergence behavior on slowly evolving solutions.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
80M25 Other numerical methods (thermodynamics) (MSC2010)
80A25 Combustion
Full Text: DOI

References:

[1] L. Alves, {\it Dual Time Stepping with Multi-Stage Schemes in Physical Time for Unsteady Low Mach Number Compressible Flows}, Tech. report, EPTT, Ilha Solteira, Brazil, 2010.
[2] U. M. Ascher, {\it Numerical Methods for Evolutionary Differential Equations}, SIAM, Philadelphia, 2008. · Zbl 1157.65048
[3] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, {\it Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations}, Appl. Numer. Math., 25 (1997), pp. 151-167. · Zbl 0896.65061
[4] U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, {\it Implicit-explicit methods for time-dependent partial differential equations}, SIAM J. Numer. Anal, 32 (1995), pp. 797-823. · Zbl 0841.65081
[5] H. Bijl, M. H. Carpenter, V. N. Vatsa, and C. A. Kennedy, {\it Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: Laminar flow}, J. Comput. Phys., 179 (2002), pp. 313-329. · Zbl 1060.76079
[6] J. G. Blom and J. G. Verwer, {\it A comparison of integration methods for atmospheric transport-chemistry problems}, J. Comput. Appl. Math., 126 (2000), pp. 381-396. · Zbl 1010.76066
[7] W. R. Briley, L. K. Taylor, and D. L. Whitfield, {\it High-resolution viscous flow simulations at arbitrary mach number}, J. Comput. Phys., 184 (2003), pp. 79-105. · Zbl 1118.76338
[8] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, {\it VODE: A variable-coefficient ODE solver}, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1038-1051. · Zbl 0677.65075
[9] J. C. Butcher, {\it Implicit Runge-Kutta processes}, Math. Comp., 18 (1964), pp. 50-64. · Zbl 0123.11701
[10] J. C. Butcher, {\it Numerical Methods for Ordinary Differential Equations}, John Wiley & Sons, 2003. · Zbl 1040.65057
[11] G. D. Byrne, A. C. Hindmarsh, K. R. Jackson, and H. G. Brown, {\it A comparison of two ODE codes: Gear and episode}, Comput. Chem. Engrg., 1 (1977), pp. 125-131.
[12] M. P. Calvo, J. De Frutos, and J. Novo, {\it Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations}, Appl. Numer. Math., 37 (2001), pp. 535-549. · Zbl 0983.65106
[13] M. Ceze and K. J. Fidkowski, {\it Constrained pseudo-transient continuation}, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1683-1703. · Zbl 1352.65479
[14] D. Choi and C. L. Merkle, {\it Application of time-iterative schemes to incompressible flow}, AIAA J., 23 (1985), pp. 1518-1524. · Zbl 0571.76016
[15] Y. Choi and C. L. Merkle, {\it The application of preconditioning in viscous flows}, J. Comput. Phys., 105 (1993), pp. 207-223. · Zbl 0768.76032
[16] T. S. Coffey, T. S. Coffey, R. J. McMullan, R. J. McMullan, C. T. Kelley, C. T. Kelley, D. S. McRae, and D. S. McRae, {\it Globally convergent algorithm for nonsmooth nonlinear equations in computational fluid dynamics}, J. Comput. Appl. Math., 152 (2003), pp. 69-81. · Zbl 1107.76360
[17] T. S. Coffey, C. T. Kelley, and D. E. Keyes, {\it Pseudotransient continuation and differential-algebraic equations}, SIAM J. Sci. Comput., 25 (2003), pp. 553-569. · Zbl 1048.65080
[18] S. D. Cohen and A. C. Hindmarsh, {\it CVODE, a stiff/nonstiff ODE solver in C}, Comput. Phys., 10 (1996), pp. 138-143.
[19] C. F. Curtiss and J. O. Hirschfelder, {\it Integration of stiff equations}, Proc. Natl. Acad. Sci. USA, 38 (1952), pp. 235-243. · Zbl 0046.13602
[20] G. Dahlquist, {\it A special stability problem for linear multistep methods}, BIT, 3 (1963), pp. 27-43. · Zbl 0123.11703
[21] M. S. Day and J. B. Bell, {\it Numerical simulation of laminar reacting flows with complex chemistry}, Combust. Theory Model., 4 (2000), pp. 535-556. · Zbl 0970.76065
[22] B. L. Ehle, {\it High order a-stable methods for the numerical solution of systems of differential equations}, BIT, 8 (1968), pp. 276-278. · Zbl 0176.14604
[23] P. Ellsiepen and S. Hartmann, {\it Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations}, Internat. J. Numer. Methods Engrg., 51 (2001), pp. 679-707. · Zbl 1014.74068
[24] I. Elmahi, O. Gloth, D. Hanel, and R. Vilsmeier, {\it A preconditioned dual time-stepping method for combustion problems}, Internat. J. Comput. Fluid Dynam., 22 (2008), pp. 169-181. · Zbl 1184.76739
[25] M. W. Farthing, C. E. Kees, T. S. Coffey, C. T. Kelley, and C. T. Miller, {\it Efficient steady-state solution techniques for variably saturated groundwater flow}, Adv. Water Res., 26 (2003), pp. 833-849.
[26] C. W. Gear, {\it Algorithm 407: DIFSUB for solution of ordinary differential equations}, Commun. ACM, 14 (1971), pp. 185-190.
[27] C. W. Gear, {\it The automatic integration of ordinary differential equations}, Commun. ACM, 14 (1971), pp. 176-179. · Zbl 0217.21701
[28] M. W. Gee, C. T. Kelley, and R. B. Lehoucq, {\it Pseudo-transient continuation for nonlinear transient elasticity}, Internat. J. Numer. Methods Engrg., 78 (2009), pp. 1209-1219. · Zbl 1183.74276
[29] D. Goodwin, N. Malaya, H. Moffat, and R. Speth, {\it Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version} 2.0.2, https://code.google.com/p/cantera/, 2013.
[30] K. Gustafsson, {\it Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods}, ACM Trans. Math. Software, 17 (1991), pp. 533-554. · Zbl 0900.65256
[31] K. Gustafsson, {\it Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods}, ACM Trans. Math. Software, 20 (1994), pp. 496-517. · Zbl 0888.65096
[32] K. Gustafsson, M. Lundh, and G. Soderlind, {\it A PI stepsize control for the numerical solution of ordinary differential equations}, BIT, 28 (1988), pp. 270-287. · Zbl 0645.65039
[33] E. Hairer and G. Wanner, {\it Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems}, Springer-Verlag, 1991. · Zbl 0729.65051
[34] E. Hairer and G. Wanner, {\it Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems}, Springer, 2010. · Zbl 1192.65097
[35] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen, {\it Scalar mixing in direct numerical simulations of temporally-evolving plane jet flames with detailed CO/H2 kinetics}, Proc. Combust. Inst., 31 (2007), pp. 1633-1640.
[36] O. Herbinet, W. J. Pitz, and C. K. Westbrook, {\it Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate}, Combust. Flame, 154 (2008), pp. 507-528.
[37] A. C. Hindmarsh, {\it Preliminary Documentation of GEARBI: Solution of ODE Systems with Block-Iterative Treatment of the Jacobian}, Tech. Report UICD-36601, University of California, Lawrence Livermore Laboratories, Lawrence, CA, 1974.
[38] A. C. Hindmarsh, {\it LSODE and LSODI, two new initial value ordinary differential equation solvers}, SIGNUM Newsl., 15 (1980), pp. 10-11.
[39] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, {\it Sundials: Suite of nonlinear and differential/algebraic equation solvers}, ACM Trans. Math. Software, 31 (2005), pp. 363-396. · Zbl 1136.65329
[40] C. T. Kelley and D. E. Keyes, {\it Convergence analysis of pseudo-transient continuation}, SIAM J. Numer. Anal, 35 (1998), pp. 508-523. · Zbl 0911.65080
[41] C. A. Kennedy and M. H. Carpenter, {\it Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, Appl. Numer. Math., 44 (2003), pp. 139-181. · Zbl 1013.65103
[42] O. M. Knio, H. N. Najm, and P. S. Wyckoff, {\it A semi-implicit numerical scheme for reacting flow. II. Stiff, operator-split formulation}, J. Comput. Phys., 154 (1999), pp. 428-467. · Zbl 0958.76061
[43] D. A. Knoll and D. E. Keyes, {\it Jacobian-free Newton-Krylov methods: A survey of approaches and applications}, J. Comput. Phys., 193 (2004), pp. 357-397. · Zbl 1036.65045
[44] D. A. Knoll and P. R. McHugh, {\it Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow}, SIAM J. Sci. Comput., 19 (1998), pp. 291-301. · Zbl 0913.76067
[45] N. M. Marinov, {\it Kinetic model for high temperature ethanol oxidation}, Internat. J. Chem. Kinetics, 31 (1999), pp. 183-220.
[46] M. Mehl, H. J. Curran, W. J. Pitz, and C. K. Westbrook, {\it Chemical kinetic modeling of component mixtures relevant to gasoline}, in Proceedings of the 4th European Combustion Meeting, Vienna, Austria, 2009.
[47] N. D. Melson, M. D. Sanetrik, and H. L Atkins, {\it Time-Accurate Navier-Stokes Calculations with Multigrid Acceleration}, Tech. report, NASA Langley Research Center, Hampton, VA, 1994.
[48] C. L. Merkle and M. Athavale, {\it Time Accurate unsteady incompressible algorithms based on artificial compressibility}, in Proceedings of the 8th AIAA Computational Fluid Dynamics Conference, 1987, pp. 397-407.
[49] C. L. Merkle and Y. Choi, {\it Computation of low-speed compressible flows with time-marching methods}, Internat. J. Numer. Methods Engrg., 25 (1988), pp. 293-311. · Zbl 0668.76077
[50] W. A. Mulder and B. van Leer, {\it Experiments with implicit upwind methods for the Euler equations}, J. Comput. Phys., (1985). · Zbl 0584.76014
[51] S. A. Northrup and C. P. T. Groth, {\it Parallel implicit adaptive mesh refinement scheme for unsteady fully-compressible reactive flows}, in Proceedings of the 21st AIAA Computational Fluid Dynamics Conference, 2013, pp. 1-20.
[52] M. O’Conaire, H. J. Curran, J. M. Simmie, W. J. Pitz, and C. K. Westbrook, {\it A comprehensive modeling study of hydrogen oxidation}, Internat. J. Chem. Kinetics, 36 (2004), pp. 603-622.
[53] L. Pareschi and G. Russo, {\it Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations}, in Recent Trends in Numerical Analysis, Vol. 3, L. Brugnano and D. Trigiante, eds., Nova Science, Huntington, NY, 2000. · Zbl 1018.65093
[54] R. A. Polyak, {\it Regularized Newton method for unconstrained convex optimization}, Math. Program., 120 (2009), pp. 125-145. · Zbl 1189.90121
[55] Z. Ren, C. Xu, T. Lu, and M. A. Singer, {\it Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations}, J. Comput. Phys., 263 (2014), pp. 19-36. · Zbl 1349.76881
[56] D. L. Ropp, J. N. Shadid, and C. C. Ober, {\it Studies of the accuracy of time integration methods for reaction-diffusion equations}, J. Comput. Phys., 194 (2004), pp. 544-574. · Zbl 1039.65069
[57] S. J. Ruuth, {\it Implicit-explicit methods for reaction-diffusion problems in pattern formation}, J. Math. Biol., 34 (1995), pp. 148-176. · Zbl 0835.92006
[58] C. Safta, J. Ray, and H. N. Najm, {\it A high-order low-Mach number AMR construction for chemically reacting flows}, J. Comput. Phys., 229 (2010), pp. 9299-9322. · Zbl 1222.80024
[59] A. Sandu, J. G. Verwer, J. G. Blom, E. J. Spee, and G. R. Carmichael, {\it Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers}, Atmos. Environ., 31 (1997), pp. 3459-3472.
[60] A. Sandu, J. G. Verwer, M. Van Loon, G. R. Carmichael, F. A. Potra, D. Dabdub, and J. H. Seinfeld, {\it Benchmarking stiff ODE solvers for atmospheric chemistry problems-I. Implicit vs. explicit}, Atmos. Environ., 31 (1997), pp. 3151-3166.
[61] V. Sankaran and J. C. Oefelein, {\it Advanced preconditioning strategies for chemically reacting flows}, in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007, AIAA, 2007-1432.
[62] D. Schwer, P. Lu, W. Green, and V. Semia͂o, {\it A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry}, Combust. Theory Model., 7 (2003), pp. 383-399.
[63] F. Sewerin and S. Rigopoulos, {\it A methodology for the integration of stiff chemical kinetics on GPUs}, Combust. Flame, 162 (2015), pp. 1375-1394.
[64] J. W. Shen and X. Zhong, {\it Semi-implicit Runge-Kutta schemes for non-autonomous differential equations in reactive flow computations}, in Proceedings of the 27th AIAA Fluid Dynamics Conference, AIAA, 1996, pp. 17-20.
[65] A. I. Shestakov, J. L. Milovich, and A. Noy, {\it Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method}, J. Colloid Interface Sci., 247 (2002), pp. 62-79.
[66] J. S. Shuen, K. H. Chen, and Y. Choi, {\it A coupled implicit method for chemical non-equilibrium flows at all speeds}, J. Comput. Phys., 106 (1993), pp. 306-318. · Zbl 0771.76051
[67] M. A. Singer, S. B. Pope, and H. N. Najm, {\it Operator-splitting with ISAT to model reacting flow with detailed chemistry}, Combust. Theory Model., 10 (2006), pp. 199-217. · Zbl 1121.80333
[68] M. D. Smooke, R. E. Mitchell, and D. E. Keyes, {\it Numerical solution of two-dimensional axisymmetric laminar diffusion flames}, Combust. Sci. Technol., 67 (1986), pp. 85-122.
[69] G. Soderlind, {\it Automatic control and adaptive time-stepping}, in Automatic Control and Adaptive Time Stepping, Anode01 Proceedings, Numerical Algorithms, 2001, pp. 1-30.
[70] R. L. Speth, W. H. Green, S. MacNamara, and G. Strang, {\it Balanced splitting and rebalanced splitting}, SIAM J. Numer. Anal., 51 (2013), pp. 3084-3105. · Zbl 1284.65121
[71] B. Sportisse, {\it An analysis of operator splitting techniques in the stiff case}, J. Comput. Phys., 161 (2000), pp. 140-168. · Zbl 0953.65062
[72] G. Strang, {\it On the construction and comparison of difference schemes}, SIAM J. Numer. Anal, 5 (1968), pp. 506-517. · Zbl 0184.38503
[73] S. Venkateswaran, M. Deshpande, and C. Merkle, {\it The application of preconditioning to reactive flow computations}, in Proceedings of the 12th AIAA Computational Fluid Dynamics Conference, AIAA 95-1673-CP, 1995, pp. 306-316.
[74] J. G. Verwer, J. G. Blom, and W. Hundsdorger, {\it An implicit-explicit approach for atmospheric transport-chemistry problems}, Appl. Numer. Math., 20 (1996), pp. 191-209. · Zbl 0853.76092
[75] J. G. Verwer, B. P. Sommeijer, and W. Hundsdorfer, {\it RKC time-stepping for advection-diffusion-reaction problems}, J. Comput. Phys., 201 (2004), pp. 61-79. · Zbl 1059.65085
[76] G. Wanner, E. Hairer, and S. P. Norsett, {\it Order stars and stability theorems}, BIT, 18 (1978), pp. 475-489. · Zbl 0444.65039
[77] R. Yu, J. Yu, and X.-S. Bai, {\it An improved high-order scheme for DNS of low Mach number turbulent reacting flows based on stiff chemistry solver}, J. Comput. Phys., 231 (2012), pp. 5504-5521. · Zbl 1428.76084
[78] X. Zhong, {\it New high-order semi-implicit Runge-Kutta schemes for computing transient, nonequilibrium hypersonic flow}, in Proceedings of the 29th AlAA Thermophysics Conference, San Diego, CA, 1995.
[79] X. Zhong, {\it Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows}, J. Comput. Phys., 31 (1996), pp. 19-31. · Zbl 0861.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.