×

Toward Dirichlet’s unit theorem on arithmetic varieties. (English) Zbl 1270.14008

In this paper, the author proposes a “fundamental question” about pseudoeffective arithmetic \(\mathbb R\)-Cartier divisors. Dirichlet’s unit theorem is interpreted as the one-dimensional case of this question, and the main theorems give affirmative answers in some higher-dimensional cases. More specifically, let \(X\) be a generically smooth projective arithmetic variety of dimension \(d\) (relative dimension \(d-1\) to \(\mathrm{Spec}\, \mathbb Z\)), and let \(\overline D = (D, g)\) be an arithmetic \(\mathbb R\)-divisor, i.e., \(D = \sum a_i D_i\) for \(a_i\in \mathbb R\) and \(D_i\) a divisor and \(g\) is a Green function associated to \(D\) which is invariant under complex conjugation on \(X(\mathbb C)\). A nonzero rational function \(\varphi\) on \(X\) defines the arithmetic principal divisor \(\widehat{(\varphi)} = ((\varphi), -\log |\varphi|^2)\). As usual, the cohomology is defined to be \[ \widehat H^0(X,\overline D) = \{\varphi\in \mathrm{Rat}(X)^*: \overline D + \widehat{(\varphi)} \text{ is effective}\} \cup \{0\}, \] and \(\overline D\) is big when \(\log \# \widehat H^0(X,n\overline D) \sim n^d\). The fundamental question asks whether the following two conditions are equivalent:
(1)
\(\overline D\) is pseudoeffective (i.e., \(\overline D + \overline A\) is big for any big arithmetic \(\mathbb R\)-divisor \(\overline A\))
(2)
\(\overline D + \widehat{(\varphi)}\) is effective (i.e., \(\geq (0,0)\)) for some \(\varphi \in \mathrm{Rat}(X)^*\otimes \mathbb R\).
(2) readily implies (1), and Dirichlet’s unit theorem follows from showing (1) implies (2) for \(d=1\). The key technical result of the paper is the compactness theorem (Corollary 3.3.2): if \(\overline{D_1}, \dots, \overline{D_m}\) are arithmetic \(\mathbb R\)-divisors satisfying an arithmetic-degree condition and a Chern-form condition with respect to an ample arithmetic divisor, then \(\{(a_1,\ldots, a_m)\in {\mathbb R}^m: \overline D + \sum a_i \overline{D_i} \text{ is effective}\}\) is convex and compact for any \(\overline D\). The author derives Dirichlet’s unit theorem in this Arakelov-theory framework, using arithmetic Riemann-Roch theorem and the compactness theorem. For higher-dimensions, the author also needs an arithmetic \(\mathbb R\)-divisor version of the Hodge index theorem (Theorem 2.2.5); a negative-definite form over \(\mathbb Q\) might not stay negative-definite over \(\mathbb R\), so one needs to know \(\mathbb R\)-divisors for which the intersection with an ample arithmetic divisor is zero. Together with the compactness theorem, the author then proves (1) implies (2) in two cases: when \(D\) is numerically trivial on \(X_{\mathbb Q}\) (Theorem 3.5.3), and when \(\overline D\) has what the author calls multiplicative generators of approximately smallest sections (Definition 3.6.1) and \(D\) is big on the generic fiber of \(X\to \mathrm{Spec}\, \mathbb Z\) (Corollary 3.6.4).

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G50 Heights
37P30 Height functions; Green functions; invariant measures in arithmetic and non-Archimedean dynamical systems

References:

[1] Z. Blocki and S. Kolodziej, On regularization of plurisubharmonic functions on manifolds , Proc. Amer. Math. Soc. 135 (2007), 2089-2093. · Zbl 1116.32024 · doi:10.1090/S0002-9939-07-08858-2
[2] J.-B. Bost, Potential theory and Lefschetz theorems for arithmetic surfaces , Ann. Sci. École Norm. Sup. 32 (1999), 241-312. · Zbl 0931.14014 · doi:10.1016/S0012-9593(99)80015-9
[3] J. I. Burgos Gil, A. Moriwaki, P. Philippon, and M. Sombra, Arithmetic positivity on toric varieties , preprint, [math.AG] 1210.7692v1 · Zbl 1378.14048
[4] A. Chambert-Loir, Arakelov geometry: Heights and Bogomolov conjecture , preprint, 2009. · Zbl 1192.14020
[5] H. Chen, Positive degree and arithmetic bigness , preprint, [math.AG] 0803.2583v3
[6] A. J. de Jong, Smoothness, semi-stability, and alterations , Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51-93. · Zbl 0916.14005 · doi:10.1007/BF02698644
[7] J.-P. Demailly, Complex analytic and differential geometry , preprint, 2007,
[8] G. Faltings, Calculus on arithmetic surfaces , Ann. of Math. 119 (1984), 387-424. · Zbl 0559.14005 · doi:10.2307/2007043
[9] M. Hindry and J. H. Silverman, Diophantine Geometry: an Introduction , Grad. Texts in Math. 201 , Springer, New York, 2000. · Zbl 0948.11023
[10] P. Hriljac, Height and Arakerov’s intersection theory , Amer. J. Math. 107 (1985), 23-38. · Zbl 0593.14004 · doi:10.2307/2374455
[11] J. Jost, Postmodern Analysis , 3rd ed., Universitext, Springer, Berlin, 2005. · Zbl 1097.26004
[12] J. Lipman, Desingularization of two-dimensional schemes , Ann. of Math. (2) 107 (1978), 151-207. · Zbl 0349.14004 · doi:10.2307/1971141
[13] V. Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables , Mém. Soc. Math Fr. (N.S.) 83 , Soc. Math. France, Montrouge, 2000.
[14] J. Milnor, Morse Theory , based on lecture notes by M. Spivak and R. Wells, Ann. of Math. Stud. 51 , Princeton Univ. Press, Princeton, 1963. · Zbl 0108.10401
[15] A. Moriwaki, Arithmetic Bogomolov-Gieseker’s inequality , Amer. J. Math. 117 (1995), 1325-1347. · Zbl 0854.14013 · doi:10.2307/2374978
[16] A. Moriwaki, Hodge index theorem for arithmetic cycles of codimension one , Math. Res. Lett. 3 , 173-183 (1996). · Zbl 0873.14005 · doi:10.4310/MRL.1996.v3.n2.a4
[17] A. Moriwaki, Continuity of volumes on arithmetic varieties , J. Algebraic Geom. 18 (2009), 407-457. · Zbl 1167.14014 · doi:10.1090/S1056-3911-08-00500-6
[18] A. Moriwaki, Continuous extension of arithmetic volumes , Int. Math. Res. Not. IMRN ( 2009 ), no. 19, 3598-3638. · Zbl 1192.14022 · doi:10.1093/imrn/rnp068
[19] A. Moriwaki, Estimation of arithmetic linear series , Kyoto J. Math. 50 (2010), 685-725. · Zbl 1210.14028 · doi:10.1215/0023608X-2010-011
[20] A. Moriwaki, Big arithmetic divisors on the projective spaces over \(\mathbb{Z}\) , Kyoto J. Math. 51 (2011), 503-534. · Zbl 1228.14023 · doi:10.1215/21562261-1299882
[21] A. Moriwaki, Zariski decompositions on arithmetic surfaces , Publ. Res. Inst. Math. Sci. 48 (2012), 799-898. · Zbl 1281.14017 · doi:10.2977/PRIMS/89
[22] A. Moriwaki, Numerical characterization of nef arithmetic divisors on arithmetic surfaces , preprint, [math.AG] 1201.6124v4
[23] L. Szpiro, “Degrés, intersections, hauteurs,” in Seminar on Arithmetic Bundles: The Mordell Conjecture (Paris, 1983/1984) , Astérisque 127 , Soc. Math. France, Montrouge, 1985, 11-28. · Zbl 1182.11029
[24] S. Zhang, Positive line bundles on arithmetic varieties , J. Amer. Math. Soc. 8 (1995), 187-221. · Zbl 0861.14018 · doi:10.2307/2152886
[25] S. Zhang, Small points and adelic metrics , J. Algebraic Geom. 4 (1995), 281-300. · Zbl 0861.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.