×

Variation of the Faltings height in a \(\overline{\mathbb{Q}}\)-isogeny class of elliptic curves. (Variation de la hauteur de Faltings dans une classe de \(\overline{\mathbb{Q}}\)-isogénie de courbe elliptique.) (French) Zbl 0952.11018

This paper proves some bounds on the variation of the Faltings height of a non-CM elliptic curve within a \(\overline{\mathbb Q}\)-isogeny class. The principal result in this direction is the following. Let \(E\) be a semi-stable elliptic curve over a number field \(K\) without complex multiplication. Let \(n\) be a positive integer, and let \(\prod_{i=1}^r p_i^{\alpha_i}\) be its prime factorization. Let \(P\) be a torsion point of \(E\) of order exactly \(n\), and let \(\pi\:E\to E'\) be the \(K(P)\)-isogeny whose kernel is generated by \(P\). Then \[ h(E')=h(E)+\tfrac 12\log n-\sum_i ((p_i^{\alpha_i}-1)/((p_i^2-1)p_i^{\alpha_i-1}))\log p_i + O(1), \] where \(O(1)\) depends only on \(E\). Moreover, if \(\text{Gal}(\overline K/K)\) acts transitively on the set of points of order \(n\) of \(E\), then the \(O(1)\) can be omitted.
The paper also proves a similar result for the norm of the conductor.
Reviewer: P.Vojta (Berkeley)

MSC:

11G50 Heights
11G05 Elliptic curves over global fields
11R32 Galois theory
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
Full Text: DOI

References:

[1] S. J. Arakelov, Intersection theory of divisors on an arithmetic surface , Math. USSR-Izv. 8 (1974), 1167-1180. · Zbl 0355.14002 · doi:10.1070/IM1974v008n06ABEH002141
[2] Gerd Faltings, Calculus on arithmetic surfaces , Ann. of Math. (2) 119 (1984), no. 2, 387-424. JSTOR: · Zbl 0559.14005 · doi:10.2307/2007043
[3] M. Flexor and J. Oesterlé, Sur les points de torsion des courbes elliptiques , Astérisque (1990), no. 183, 25-36, dans Séminaire sur les Pinceaux de Courbes Elliptiques, (Paris, 1988), Soc. Math. France, Paris. · Zbl 0737.14004
[4] Paul Hriljac, Splitting fields of principal homogeneous spaces , Number theory (New York, 1984-1985), Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 214-229. · Zbl 0623.14013
[5] Serge Lang, Introduction to Arakelov theory , Springer-Verlag, New York, 1988. · Zbl 0667.14001
[6] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld) , Invent. Math. 44 (1978), no. 2, 129-162. · Zbl 0386.14009 · doi:10.1007/BF01390348
[7] Michel Raynaud, Hauteurs et isogénies , Astérisque (1985), no. 127, 199-234, dans Seminar on Arithmetic Bundles: The Mordell Conjecture (Paris, 1983/84), Soc. Math. France, Paris. · Zbl 1182.14049
[8] Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques , Invent. Math. 15 (1972), no. 4, 259-331. · Zbl 0235.14012 · doi:10.1007/BF01405086
[9] Joseph H. Silverman, Heights and elliptic curves , Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 253-265. · Zbl 0603.14020
[10] Joseph H. Silverman, Hecke points on modular curves , Duke Math. J. 60 (1990), no. 2, 401-423. · Zbl 0744.14014 · doi:10.1215/S0012-7094-90-06016-8
[11] Lucien Szpiro, Degrés, intersections, hauteurs , Astérisque (1985), no. 127, 11-28, dans Seminar on Arithmetic Bundles: The Mordell Conjecture (Paris, 1983/84), Soc. Math. France, Paris. · Zbl 1182.11029
[12] L. Szpiro, Sur les propriétés numériques du dualisant relatif d’une surface arithmétique , The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 229-246. · Zbl 0759.14018
[13] Emmanuel Ullmo, Points entiers, points de torsion et amplitude arithmétique , Amer. J. Math. 117 (1995), no. 4, 1039-1055. JSTOR: · Zbl 0863.14016 · doi:10.2307/2374958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.