×

Ground state solutions for a class of semilinear elliptic systems with sum of periodic and vanishing potentials. (English) Zbl 1400.35135

Summary: In this paper, we consider the following semilinear elliptic systems: \[ \begin{cases} -\Delta u+V(x)u=F_{u}(x, u, v)-\Gamma(x)|u|^{q-2}u \quad \mathrm{in}\mathbb{R}^{N},\\ -\Delta v+V(x)v=F_{v}(x, u, v)-\Gamma(x)|v|^{q-2}v \quad \mathrm{in}\mathbb{R}^{N},\\ \end{cases} \] where \(q\in[2,2^{*})\), \(V=V_{{\mathrm per}}+V_{{\mathrm loc}}\in L^{\infty}(\mathbb{R}^{N})\) is the sum of a periodic potential \(V_{{\mathrm {per}}}\) and a localized potential \(V_{\mathrm{loc}}\) and \(\Gamma\in L^{\infty}(\mathbb{R}^{N})\) is periodic and \(\Gamma(x)\geq0\) for almost every \(x\in\mathbb{R}^{N}\). Under some appropriate assumptions on \(F\), we investigate the existence and nonexistence of ground state solutions for the above system. Recent results from the literature are improved and extended.

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J47 Second-order elliptic systems

References:

[1] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] T. Bartsch and Y.H. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nachr. 279 (2006), 1-22. · Zbl 1117.58007 · doi:10.1002/mana.200410420
[3] T. Bartsch and J. Mederski, Ground and bound state solutions of semilinear time-harmonic Maxwell equations in a bounded domain, Arch. Rational Mech. Anal. 215 (2015), 283-306. · Zbl 1315.35214 · doi:10.1007/s00205-014-0778-1
[4] B. Bieganowski and J. Mederski, Nonlinear Schrödinger equations with sum of periodic and vanishig potentials and sign-changning nonlinearities, preprint, arXiv:1602.05078. · Zbl 1375.35475
[5] D. Cao and Z. Tang, Solutions with prescribed number of nodes to superlinear elliptic systems, Nonlinear Anal. 55 (2003), 702-722. · Zbl 1073.35078 · doi:10.1016/j.na.2003.07.014
[6] G.F. Che and H.B. Chen, Multiplicity of small negative-energy solutions for a class of semilinear elliptic systems, Bound. Value Probl. 2016 (2016), 1-12. · Zbl 1343.35095
[7] V. Coti-Zelati and P. Rabinowitz, Homoclinic type solutions for a semilinear elliptic \romPDE on \(\mathbb{R}^{N}\), Comm. Pure Appl. Math. 45 (1992), 1217-1269. · Zbl 0785.35029
[8] P. D’Avenia and J. Mederski, Positive ground states for a system of Schrödinger equations with critically growing nonlinearities, Calc. Var. Partial Differential Equations 53 (2015), 879-900. · Zbl 1317.35067
[9] S. Duan and X. Wu, The existence of solutions for a class of semilinear elliptic systems, Nonlinear Anal. 73 (2010), 2842-2854. · Zbl 1198.35080 · doi:10.1016/j.na.2010.06.031
[10] G. Figueiredo and H.R. Quoirin, Ground states of elliptic problems involving nonhomogeneous operators, Indiana Univ. Math. J. 65 (2016), 779-795. · Zbl 1355.35060 · doi:10.1512/iumj.2016.65.5828
[11] Q. Guo and J. Mederski, Ground states of nonlinear Schrödinger equations with sum of periodic and inverse square potentials, J. Differential Equations 260 (2016), 4180-4202. · Zbl 1335.35232 · doi:10.1016/j.jde.2015.11.006
[12] L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on \(\mathbb{R}^{N}\), Indiana Univ. Math. J. 54 (2005), 443-464. · Zbl 1143.35321
[13] G. Li and X. Tang, Nehari-type state solutions for Schrödinger equations including critical exponent, Appl. Math. Lett. 37 (2014), 101-106. · Zbl 1320.35167
[14] F.F. Liao, X.H. Tang, J. Zhang and D.D. Qin, Semi-classical solutions of perturbed elliptic system with general superlinear nonlinearity, Bound. Value Probl. 2014 (2014), 1-13. · Zbl 1304.35270
[15] F.F. Liao, X.H. Tang, J. Zhang and D.D. Qin, Super-quadratic conditions for periodic elliptic system on \(\mathbb{R}^{N}\), Electron. J. Differential Equations 127 (2015), 1-11. · Zbl 1322.35022
[16] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Parts I and II, Ann. Inst. H. Poincaré Anal. Non Linéare 1 (1984), 109-145; 223-283. · Zbl 0704.49004 · doi:10.1016/S0294-1449(16)30422-X
[17] L. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations 229 (2006), 743-767. · Zbl 1104.35053 · doi:10.1016/j.jde.2006.07.002
[18] J. Mederski, Solutions to a nonlinear Schrödinger equation with periodic potential and zero on the boundary of the spectrum, Topol. Methods Nonlinear Anal. 46 (2015), 755-771. · Zbl 1362.35289
[19] J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations 41 (2016), 1426-1440. · Zbl 1353.35267 · doi:10.1080/03605302.2016.1209520
[20] A. Pankov, On decay of solutions to nonlinear Schrödinger equations, Proc. Amer. Math. Soc. 136 (2008), 2565-2570. · Zbl 1143.35093
[21] Z. Qu and C. Tang, Existence and multiplicity results for some elliptic systems at resonance, Nonlinear Anal. 71 (2009), 2660-2666. · Zbl 1172.35382 · doi:10.1016/j.na.2009.01.106
[22] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Analysis of Operators, Vol. IV, Academic Press, New York, 1978. · Zbl 0401.47001
[23] H.X. Shi and H.B. Chen, Ground state solutions for resonant cooperative elliptic systems with general superlinear terms, Mediterr. J. Math. 13 (2016), 2897-2909. · Zbl 1355.35065 · doi:10.1007/s00009-015-0663-7
[24] E. Silva, Existence and multiplicity of solutions for semilinear elliptic systems, NoDEA Nonlinear Differential Equations Appl. 1 (1994), 339-363. · Zbl 0814.35036 · doi:10.1007/BF01194985
[25] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), 3802-3822. · Zbl 1178.35352 · doi:10.1016/j.jfa.2009.09.013
[26] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. · Zbl 0856.49001
[27] L.R. Xia, J. Zhang and F.K. Zhao, Ground state solutions for superlinear elliptic systems on \(\mathbb{R}^{N}\), J. Math. Anal. Appl. 401 (2013), 518-525. · Zbl 1266.35051
[28] J. Zhang, W.P. Qin and F.K. Zhao, Existence and multiplicity of solutions for asymptotically linear nonperiodic Hamiltonian elliptic system, J. Math. Anal. Appl. 399 (2013), 433-441. · Zbl 1345.35031 · doi:10.1016/j.jmaa.2012.10.030
[29] J. Zhang and Z. Zhang, Existence results for some nonlinear elliptic systems, Nonlinear Anal. 71 (2009), 2840-2846. · Zbl 1167.35360 · doi:10.1016/j.na.2009.01.158
[30] F.K. Zhao, L.G. Zhao and Y.H. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian system, ESAIM Control Optim. Calc. Var. 16 (2010), 77-91. · Zbl 1189.35091 · doi:10.1051/cocv:2008064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.