×

Existence of solutions for a system of diffusion equations with spectrum point zero. (English) Zbl 1293.35137

Summary: We consider the existence and multiplicity of homoclinic type solutions to a system of diffusion equations with spectrum point zero. By using some recent critical point theorems for strongly indefinite problems, we obtain at least one nontrivial solution and also infinitely many solutions.

MSC:

35K45 Initial value problems for second-order parabolic systems
49J20 Existence theories for optimal control problems involving partial differential equations
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
37C29 Homoclinic and heteroclinic orbits for dynamical systems
35K58 Semilinear parabolic equations
Full Text: DOI

References:

[1] Lions J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) · Zbl 0203.09001 · doi:10.1007/978-3-642-65024-6
[2] Nagasawa M.: Schrödinger Equations and Diffusion Theory. Birkhöser, Basel (1993) · Zbl 0780.60003 · doi:10.1007/978-3-0348-0560-5
[3] Barbu V.: Periodic solutions to unbounded Hamiltonian system. Discret. Contin. Dyn. Syst. 1, 277-283 (1995) · Zbl 0882.34065 · doi:10.3934/dcds.1995.1.277
[4] Ding Y., Lee C.: Multiple solutions of Schrödinger equations with indefinite linear part and super or asympototically linear terms. J. Differ. Equ. 222, 137-163 (2006) · Zbl 1090.35077 · doi:10.1016/j.jde.2005.03.011
[5] Bartsch T., Ding Y.: Homoclinic solutions of an infinite-dimensional Hamiltonian system. Math. Z. 240, 289-310 (2002) · Zbl 1008.37040 · doi:10.1007/s002090100383
[6] Ding Y., Luan S., Willem M.: Solutions of a system of diffusion equations. J. Fixed Point Theory Appl. 2, 117-139 (2007) · Zbl 1134.35094 · doi:10.1007/s11784-007-0023-8
[7] Brézis H., Nirenberg L.: Characterization theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279, 1267-1288 (2006) · Zbl 1117.58007 · doi:10.1002/mana.200410420
[8] Clément P., Felmer P., Mitidieri E.: Solutions homoclines d’un système hamiltonien non-borné et superquadratique. C.R. Acad. Sci. Paris 320, 1481-1484 (1995) · Zbl 0836.35043
[9] Clément P., Felmer P., Mitidieri E.: Homoclinic orbits for a class of infinite dimensional Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa 24(2), 367-393 (1997) · Zbl 0902.35051
[10] Bartsch T., Ding Y.: On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313, 15-37 (1999) · Zbl 0927.35103 · doi:10.1007/s002080050248
[11] Ding, Y.: Variational Methods for Strongly Indefinite Problems. Interdiscip. Math. Sci., vol. 7. World Scientific, Singapore (2007) · Zbl 1133.49001
[12] Bartsch T., Ding Y.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279, 1-22 (2006) · Zbl 1117.58007 · doi:10.1002/mana.200410420
[13] Coti-Zelati V., Rabinowitz P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \[{\mathbb{R}^N} \]. Commun. Pure Appl. Math. 45, 1217-1269 (1992) · Zbl 0785.35029 · doi:10.1002/cpa.3160451002
[14] Coti-Zelati V., Rabinowitz P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4, 693-727 (1991) · Zbl 0744.34045 · doi:10.1090/S0894-0347-1991-1119200-3
[15] Ding Y., Willem M.: Homoclinic orbits of a Hamiltonian system. Z. Angew. Math. Phys. 50, 759-778 (1999) · Zbl 0997.37041 · doi:10.1007/s000330050177
[16] de Figueiredo, D.G.: Chapter 1: semilinear elliptic systems: existence, multiplicity, symmetry of solutions. Handb. Differ. Equ. Station. Partial Differ. Equ. 5, 1-40 (2008) · Zbl 1187.35056
[17] de Figueiredo D.G., Ding Y.: Strongly indefinite functionals and multiple solutions of elliptic systems. Trans. Am. Math. Soc. 355, 2973ndash;2989 (2003) · Zbl 1125.35338 · doi:10.1090/S0002-9947-03-03257-4
[18] de Figueiredo D.G., Yang J.: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33, 211-234 (1998) · Zbl 0938.35054 · doi:10.1016/S0362-546X(97)00548-8
[19] Kryszewski W., Szulkin A.: An infinite dimensional Morse theory with applications. Trans. Am. Math. Soc. 349, 3181-3234 (1997) · Zbl 0892.58015 · doi:10.1090/S0002-9947-97-01963-6
[20] Mawhin, J., Willem, M: Critical Point Theory and Hamilatonian Systems. Appl. Math. Sci., vol. 74. Springer (1989) · Zbl 0676.58017
[21] Schechter M., Zou W.: Homoclinic orbits for Schrödinger systems. Mich. Math. J. 51, 59-71 (2003) · Zbl 1195.35281 · doi:10.1307/mmj/1049832893
[22] Willem M., Zou W.: On a Schrödinger Equation with periodic potential and spectrum point zero. Indiana Univ. Math. J. 52, 109-132 (2003) · Zbl 1030.35068 · doi:10.1512/iumj.2003.52.2273
[23] Yang M., Chen W., Ding Y.: Solutions of a class of Hamiltonian elliptic systems in \[{\mathbb{R}^N} \]. J. Math. Anal. Appl. 362, 338-349 (2010) · Zbl 1181.35070 · doi:10.1016/j.jmaa.2009.07.052
[24] Yang M., Chen W., Ding Y.: Solutions for periodic Schrödinger equation with spectrum zero and general superlinear nonlinearities. J. Math. Anal. Appl. 364, 404C413 (2010) · Zbl 1189.35108 · doi:10.1016/j.jmaa.2009.10.022
[25] Zhao F., Zhao L., Ding Y.: Infinitely many solutions for asymptotically linear periodic elliptic systems. ESAIM Control Optim. Calc. Var. 16, 77-91 (2010) · Zbl 1189.35091 · doi:10.1051/cocv:2008064
[26] Zhao F., Ding Y.: On Hamiltonian elliptic systems with periodic or non-periodic potentials. J. Differ. Equ. 249, 2964-2985 (2010) · Zbl 1205.35080 · doi:10.1016/j.jde.2010.09.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.