×

Concentration behavior of semiclassical solutions for Hamiltonian elliptic system. (English) Zbl 1448.35177

Summary: In this paper, we study the following nonlinear Hamiltonian elliptic system with gradient term \[ \begin{cases} -\epsilon^2 \Delta \psi + \epsilon \vec{b} \cdot \nabla \psi + \psi + V(x) \varphi = f (|\eta|) \varphi \quad \text{in } \mathbb{R}^N, \\ - \epsilon^2 \Delta \varphi - \epsilon \vec{b} \cdot \nabla \varphi + \varphi + V(x) \psi = f(|\eta|)\psi \quad \text{in } \mathbb{R}^N, \end{cases} \] where \(\eta = (\psi, \phi) : \mathbb{R}^N \rightarrow \mathbb{R}^2, \varepsilon\) is a small positive parameter and \(\vec{b}\) is a constant vector. We require that the potential \(V\) only satisfies certain local condition. Combining this with other suitable assumptions on \(f\), we construct a family of semiclassical solutions. Moreover, the concentration phenomena around local minimum of \(V\), convergence and exponential decay of semiclassical solutions are also explored. In the proofs we apply penalization method, linking argument and some analytical techniques since the local property of the potential and the strongly indefinite character of the energy functional.

MSC:

35J47 Second-order elliptic systems
35J50 Variational methods for elliptic systems
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] N. Ackermann, A nonlinear superposition principle and multibump solution of periodic Schrödinger equations. J. Funct. Anal. 234 (2006) 423-443.
[2] A. I. Ávila, J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations 191 (2003) 348-376. · Zbl 1109.35325
[3] C. T. Anh, B. K. My, Existence and non-existence of solutions to a Hamiltonian strongly degenerate elliptic system, Adv. Nonlinear Anal. 8 (2019) 661-678. · Zbl 1419.35055
[4] T. Bartsch, D. G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems, in: Progr. Nonlinear Differential Equations Appl. Vol. 35, Birkhäuser, Basel, Switzerland. (1999) 51-67. · Zbl 0922.35049
[5] J. Byeon, L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007) 185-200. · Zbl 1132.35078
[6] J. Byeon, Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, II, Calc. Var. Part. Diffe. Equ. 18 (2003) 207-219. · Zbl 1073.35199
[7] D. G. De Figueiredo, J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear. Anal. 331 (1998) 211-234. · Zbl 0938.35054
[8] M. del Pino, P. L. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Part. Diffe. Equ. 4 (1996) 121-137. · Zbl 0844.35032
[9] M. del Pino, P. Felmer. Multipeak bound states of nonlinear Schrödinger equations. Annales Inst. H. Poincaré Analyse Non Linéaire 15 (1998) 127-149. · Zbl 0901.35023
[10] Y. H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008.
[11] D. G. De Figueiredo, Y. H. Ding, Strongly indefinite functions and multiple solutions of elliptic systems, Trans. Am. Math. Soc. 355 (2003) 2973-2989. · Zbl 1125.35338
[12] D. G. De Figueiredo, P. L. Felmer, On superquadiatic elliptic systems, Trans. Am. Math. Soc. 343 (1994) 97-116. · Zbl 0799.35063
[13] Y. H. Ding, C. Lee, F. K. Zhao, Semiclassical limits of ground state solutions to Schrödinger systems, Calc. Var. Partial Differential Equations 51 (2014) 725-760. · Zbl 1310.35104
[14] Y. H. Ding, T. Xu, Localized concentration of semi-classical states for nonlinear Dirac equations, Arch. Rational Mech. Anal., 216 (2015) 415-447. · Zbl 1309.35102
[15] J. Hulshof, R. C. A. M. De Vorst, Differential systems with strongly variational structure, J. Funct. Anal. 113 (1993) 32-58. · Zbl 0793.35038
[16] M. Esteban, E. Séré, Stationary states of the nonlinear Dirac equation: A variational approach, Comm. Math. Phys. 171 (1995) 250-323. · Zbl 0843.35114
[17] A. Fonda, R. Toader, Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth, Adv. Nonlinear Anal. 8 (2019) 583-602. · Zbl 1419.37059
[18] C. F. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Commun. Part. Diffe. Equ. 21 (1996) 787-820. · Zbl 0857.35116
[19] M. Nagasawa, Schröinger Equations and Diffusion Theory, Birkhäser, 1993. · Zbl 0780.60003
[20] P. L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283. · Zbl 0704.49004
[21] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, 1971. · Zbl 0203.09001
[22] S. B. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012) 1-9. · Zbl 1247.35149
[23] G. B. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002) 763-776. · Zbl 1056.35065
[24] F. Liao, X. Tang, D. Qin, New conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms, Bull. Iranian Math. Soc. 41 (2015) 1131-1146. · Zbl 1373.35118
[25] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math. 73 (2005) 259-287. · Zbl 1225.35222
[26] A. Pankov, Homoclinics for strongly indefinite almost periodic second order Hamiltonian systems, Adv. Nonlinear Anal. 8 (2019) 372-385. · Zbl 1430.37067
[27] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992) 270-291. · Zbl 0763.35087
[28] M. Ramos, H. Tavares, Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differ. Equ. 31 (2008) 1-25. · Zbl 1143.35027
[29] B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in ℝ^N, Adv. Differential Equations 5 (2000) 1445-1464. · Zbl 1213.35223
[30] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982) 447-526. · Zbl 0524.35002
[31] A. Szulkin, T. Weth, Ground state solutions for some indefinite problems, J. Funct. Anal. 257 (2009) 3802-3822. · Zbl 1178.35352
[32] X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math. 58 (2015) 715-728. · Zbl 1321.35055
[33] X. H. Tang, X. Y. Lin, Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems, Sci. China Math. 63 (2020) 113-134. · Zbl 1444.35052
[34] X. F. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993) 229-244. · Zbl 0795.35118
[35] M. B. Yang, W. X. Chen, Y. H. Ding, Solutions of a class of Hamiltonian elliptic systems in ℝ^N, J. Math. Anal. Appl. 352 (2010) 338-349. · Zbl 1181.35070
[36] X. Zhang, On the concentration of semiclassical states for nonlinear Dirac equations, Discrete Contin. Dyn. Syst., 38 (2018) 5389-5413. · Zbl 1401.35256
[37] F. K. Zhao, L. G. Zhao, Y. H. Ding, Infinitly many solutions for asymptotically linear periodic Hamiltonian system, ESAIM: Control, Optim. Calc. Vari. 16 (2010) 77-91. · Zbl 1189.35091
[38] F. K. Zhao, L. G. Zhao, Y. H. Ding, Multiple solution for a superlinear and periodic ellipic system on ℝ^N, Z. Angew. Math. Phys. 62 (2011), 495-511. · Zbl 1279.35038
[39] F. K. Zhao, Y. H. Ding, On Hamiltonian elliptic systems with periodic or non-periodic potentials, J. Differential Equations 249 (2010) 2964-2985. · Zbl 1205.35080
[40] J. Zhang, X. H. Tang, W. Zhang, Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal. 95 (2014) 1-10. · Zbl 1285.35027
[41] J. Zhang, X. H. Tang, W. Zhang, On semiclassical ground state solutions for Hamiltonian elliptic systems, Appl. Anal. 94 (2015) 1380-1396. · Zbl 1319.81039
[42] J. Zhang, X. H. Tang, W. Zhang, On semiclassical ground states for Hamiltonian elliptic system with critical growth, Topol. Meth. Nonl. Anal., 49 (2017) 245-272. · Zbl 1375.35161
[43] J. Zhang, W. Zhang, Existence and decay property of ground state solutions for Hamiltonian elliptic system, Comm. Pure Appl. Anal. 18 (2019) 2433-2455. · Zbl 1479.37030
[44] J. Zhang, W. Zhang, X. H. Tang, Semiclassical limits of ground states for Hamiltonian elliptic system with gradient term, Nonlinear Anal. Real World Appl., 40 (2018) 377-402. · Zbl 1387.35179
[45] J. Zhang, W. Zhang, X. H. Tang, Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst., 37 (2017) 4565-4583. · Zbl 1370.35111
[46] J. Zhang, W. Zhang, X. L. Xie, Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Comm. Pure Appl. Anal., 15 (2016) 599-622. · Zbl 1333.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.