×

Further research on complete moment convergence for moving average process of a class of random variables. (English) Zbl 1395.60037

Summary: In this article, the complete moment convergence for the partial sum of moving average processes \(\{X_{n}=\sum_{i=-\infty}^{\infty}a_{i}Y_{i+n},n\geq 1\}\) is established under some mild conditions, where \(\{Y_{i},-\infty < i<\infty\}\) is a doubly infinite sequence of random variables satisfying the Rosenthal type maximal inequality and \(\{a_{i},-\infty< i<\infty\}\) is an absolutely summable sequence of real numbers. These conclusions promote and improve the corresponding results given by M.-H. Ko [ibid. 2015, Paper No. 225, 9 p. (2015; Zbl 1335.60039)].

MSC:

60F15 Strong limit theorems
26D15 Inequalities for sums, series and integrals

Citations:

Zbl 1335.60039

References:

[1] Ko, MH: Complete moment convergence of moving average process generated by a class of random variables. J. Inequal. Appl. 2015, 225 (2015) · Zbl 1335.60039 · doi:10.1186/s13660-015-0745-x
[2] Peligrad, M: Convergence rates of the strong law for stationary mixing sequences. Z. Wahrscheinlichkeitstheor. Verw. Geb. 70(2), 307-314 (1985) · Zbl 0554.60038 · doi:10.1007/BF02451434
[3] Zhou, XC: Complete moment convergence of moving average processes under φ-mixing assumptions. Stat. Probab. Lett. 80, 285-292 (2010) · Zbl 1186.60031 · doi:10.1016/j.spl.2009.10.018
[4] Wang, JF, Lu, FB: Inequalities of maximum of partial sums and weak convergence for a class of weak dependent random variables. Acta Math. Sin. 22, 693-700 (2006) · Zbl 1102.60023 · doi:10.1007/s10114-005-0601-x
[5] Utev, S, Peligrad, M: Maximal inequalities and an invariance principle for a class of weakly dependent random variables. J. Theor. Probab. 16(1), 101-115 (2003) · Zbl 1012.60022 · doi:10.1023/A:1022278404634
[6] Shao, QM: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13(2), 343-356 (2000) · Zbl 0971.60015 · doi:10.1023/A:1007849609234
[7] Stoica, G: A note on the rate of convergence in the strong law of large numbers for martingales. J. Math. Anal. Appl. 381(2), 910-913 (2011) · Zbl 1237.60025 · doi:10.1016/j.jmaa.2011.04.008
[8] Shen, AT: Probability inequalities for END sequence and their applications. J. Inequal. Appl. 2011, 98 (2011) · Zbl 1276.60019 · doi:10.1186/1029-242X-2011-98
[9] Yuan, DM, An, J: Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications. Sci. China Ser. A 52(9), 1887-1904 (2009) · Zbl 1184.62099 · doi:10.1007/s11425-009-0154-z
[10] Kuczmaszewska, A: On complete convergence in Marcinkiewicz-Zygmund type SLLN for negatively associated random variables. Acta Math. Hung. 128(1-2), 116-130 (2010) · Zbl 1224.60047 · doi:10.1007/s10474-009-9166-y
[11] Li, YX, Zhang, LX: Complete moment convergence of moving average processes under dependence assumptions. Stat. Probab. Lett. 70, 191-197 (2004) · Zbl 1056.62100 · doi:10.1016/j.spl.2004.08.011
[12] Zhou, XC, Lin, JG: Complete moment convergence of moving average processes under ρ-mixing assumption. Math. Slovaca 61(6), 979-992 (2011) · Zbl 1289.60055 · doi:10.2478/s12175-011-0063-9
[13] Chen, PY, Yi, JM, Sung, SH: An extension of the Baum-Katz theorem to i.i.d. random variables with general moment conditions. J. Inequal. Appl. 2015, 414 (2015) · Zbl 1330.60051 · doi:10.1186/s13660-015-0939-2
[14] Gut, A: Complete convergence for arrays. Period. Math. Hung. 25(1), 51-75 (1992) · Zbl 0760.60029 · doi:10.1007/BF02454383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.