×

Complete \(q\)th moment convergence of moving average processes for \(m\)-widely acceptable random variables under sub-linear expectations. (English) Zbl 07913932

Summary: In this article, we studied complete \(q\)th moment convergence of the moving average processes produced by \(m\)-widely acceptable (\(m\)-WA) random variables under sub-linear expectations. The results here extend those of the moving average processes generated by \(m\)-WOD random variables in probability.

MSC:

60F15 Strong limit theorems
60F05 Central limit and other weak theorems
Full Text: DOI

References:

[1] Chen, Z., Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59, 5, 945-954, 2016 · Zbl 1341.60015
[2] Gao, F.; Xu, M., Large deviations and moderate deviations for independent random variables under sublinear expectations, Sci. China Math. (in Chinese), 41, 4, 337-352, 2011 · Zbl 1488.60043
[3] Hosseini, S. M.; Nezakati, A., Complete moment convergence for the dependent linear processes with random coefficients, Acta Math. Sin. (Engl. Ser.), 35, 8, 1321-1333, 2019 · Zbl 1420.60041
[4] Hu, F.; Chen, Z.; Zhang, D., How big are the increments of G-Brownian motion?, Sci. China Math., 57, 8, 1687-1700, 2014 · Zbl 1301.60068
[5] Hu, Z.-C.; Yang, Y.-Z., Some inequalities and limit theorems under sublinear expectations, Acta Math. Appl. Sin. Engl. Ser., 33, 2, 451-462, 2017 · Zbl 1370.60054
[6] Ko, M.-H., Complete moment convergence of moving average process generated by a class of random variables, J. Inequal. Appl., 2015, 1, 1-9, 2015 · Zbl 1335.60039
[7] Kuczmaszewska, A., Complete convergence for widely acceptable random variables under the sublinear expectations, J. Math. Anal. Appl., 484, 1, Article 123662 pp., 2020 · Zbl 1471.60041
[8] Meng, B.; Wang, D.; Wu, Q., Convergence of asymptotically almost negatively associated random variables with random coefficients, Comm. Statist. Theory Methods, 1-15, 2021
[9] Peng, S., G-expectation, G-Brownian motion and related stochastic calculus of Itô type, (Stochastic Analysis and Applications, vol. 2, 2007, Springer: Springer USA), 541-567 · Zbl 1131.60057
[10] Peng, S., Nonlinear Expectations and Stochastic Calculus Under Uncertainty: with Robust CLT and G-Brownian Motion, 2019, Springer Nature: Springer Nature Berlin, Germany · Zbl 1427.60004
[11] Song, M.; Wu, Y.; Chu, Y., Complete \(q\) th-moment convergence of moving average process for \(m\)-WOD random variable, Wuhan Univ. J. Nat. Sci., 27, 5, 396-404, 2022
[12] Wu, Q.; Jiang, Y., Strong law of large numbers and Chover’s law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460, 1, 252-270, 2018 · Zbl 1380.60039
[13] Xu, M., Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations, AIMS Math., 8, 7, 17067-17080, 2023
[14] Xu, M., On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations, AIMS Math., 9, 2, 3369-3385, 2024
[15] Xu, M.; Cheng, K., Convergence for sums of iid random variables under sublinear expectations, J. Inequal. Appl., 2021, 1, 1-14, 2021 · Zbl 1504.60052
[16] Xu, M.; Cheng, K., How small are the increments of G-Brownian motion, Statist. Probab. Lett., 186, 1-9, 2022 · Zbl 1492.60144
[17] Xu, M.; Cheng, K.; Yu, W., Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations, AIMS Math., 7, 11, 19998-20019, 2022
[18] Xu, M.; Cheng, K.; Yu, W., Convergence of linear processes generated by negatively dependent random variables under sub-linear expectations, J. Inequal. Appl., 2023, 2023 · Zbl 1532.60062
[19] Xu, M.; Kong, X., Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations, AIMS Math., 8, 4, 8504-8521, 2023
[20] Xu, M.; Kong, X., Complete moment convergence of moving average processes for \(m\)-widely acceptable sequence under sub-linear expectations, 2024, arXiv preprint arXiv:2403.18304v1
[21] Zhang, L.-X., Donsker’s invariance principle under the sub-linear expectation with an application to Chung’s law of the iterated logarithm, Commun. Math. Stat., 3, 2, 187-214, 2015 · Zbl 1321.60067
[22] Zhang, L., Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59, 12, 2503-2526, 2016 · Zbl 1362.60031
[23] Zhang, L., Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59, 4, 751-768, 2016 · Zbl 1338.60095
[24] Zhang, L., On the laws of the iterated logarithm under sub-linear expectations, Probab., Uncertain. Quant. Risk, 6, 4, 409-460, 2021 · Zbl 1491.60047
[25] Zhang, L.-X., Strong limit theorems for extended independent random variables and extended negatively dependent random variables under sub-linear expectations, Acta Math. Sci., 42, 2, 467-490, 2022 · Zbl 1513.60037
[26] Zhang, Y.; Ding, X., Further research on complete moment convergence for moving average process of a class of random variables, J. Inequal. Appl., 2017, 1, 1-11, 2017 · Zbl 1395.60037
[27] Zhang, L.; Lin, J., Marcinkiewicz’s strong law of large numbers for nonlinear expectations, Statist. Probab. Lett., 137, 269-276, 2018 · Zbl 1406.60049
[28] Zhong, H.; Wu, Q., Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017, 1, 1-14, 2017 · Zbl 1386.60117
[29] Zhou, X., Complete moment convergence of moving average processes under \(\varphi \)-mixing assumptions, Statist. Probab. Lett., 80, 5-6, 285-292, 2010 · Zbl 1186.60031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.