×

Classification of backward filtrations and factor filtrations: examples from cellular automata. (English) Zbl 1503.37030

Summary: We consider backward filtrations generated by processes coming from deterministic and probabilistic cellular automata. We prove that these filtrations are standard in the classical sense of Vershik’s theory, but we also study them from another point of view that takes into account the measure-preserving action of the shift map, for which each sigma-algebra in the filtrations is invariant. This initiates what we call the dynamical classification of factor filtrations, and the examples we study show that this classification leads to different results.

MSC:

37B15 Dynamical aspects of cellular automata

References:

[1] Bramson, M. and Neuhauser, C.. Survival of one-dimensional cellular automata under random perturbations. Ann. Probab.22(1) (1994), 244-263. · Zbl 0793.60107
[2] Bressaud, X., Maass, A., Martinez, S. and San Martin, J.. Stationary processes whose filtrations are standard. Ann. Probab.34(4) (2006), 1589-1600. · Zbl 1104.60005
[3] Ceillier, G. and Leuridan, C.. Sufficient conditions for the filtration of a stationary processes to be standard. Probab. Theory Related Fields167(3-4) (2017), 979-999. · Zbl 1375.60076
[4] De La Rue, T.. An introduction to joinings in ergodic theory.Discrete Contin. Dyn. Syst.15(1) (2006), 121-142. · Zbl 1105.37003
[5] Dubins, L., Feldman, J., Smorodinsky, M. and Tsirelson, B.. Decreasing sequences of \(\sigma \) -fields and a measure change for Brownian motion. I. Ann. Probab.24(2) (1996), 882-904. · Zbl 0870.60078
[6] Émery, M. and Schachermayer, W.. On Vershik’s standardness criterion and Tsirelson’s notion of cosiness.Séminaire de Probabilités XXXV. Ed. J. Azéma, M. Émery, M. Ledoux and M.Yor. Springer, Berlin, 2001, pp. 265-305. · Zbl 1001.60039
[7] Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation.Math. Syst. Theory1 (1967), 1-49. · Zbl 0146.28502
[8] Hoffman, C.. A zero entropy \(\text{T}\) such that the \(\left[\text{T},\text{Id}\right]\) endomorphism is nonstandard. Proc. Am. Math. Soc.128(1) (2000), 183-188. · Zbl 0943.37006
[9] Hoffman, C. and Rudolph, D.. A dyadic endomorphism which is Bernoulli but not standard. Israel J. Math.130 (2002), 365-379. · Zbl 1013.37002
[10] Lanthier, P.. Aspects ergodiques et algébriques des automates cellulaires. PhD Thesis, Université de Rouen Normandie, 2020.
[11] Laurent, S.. On standardness and I-cosiness.Séminaire de Probabilités XLIII, Poitiers, France, Juin 2009. Ed. C. Donati-Martin, A. Lejay and A.Rouault. Springer, Berlin, 2011, pp. 127-186. · Zbl 1230.60035
[12] Liggett, T. M.. Survival of discrete time growth models, with applications to oriented percolation. Ann. Appl. Probab.5(3) (1995), 613-636. · Zbl 0842.60090
[13] Marcovici, I.. Ergodicity of noisy cellular automata: the coupling method and beyond.Pursuit of the Universal. Proc. 12th Conf. on Computability in Europe, CiE 2016 (Paris, France, June 27-July 1, 2016). Ed. Beckmann, A., Bienvenu, L. and Jonoska, N.. Springer, Cham, 2016, pp. 153-163. · Zbl 1479.37018
[14] Smorodinsky, M.. Processes with no standard extension.Israel J. Math.107 (1998), 327-331. · Zbl 0921.60074
[15] Tsirelson, B.. Triple points: from non-Brownian filtrations to harmonic measures.Geom. Funct. Anal.7(6) (1997), 1096-1142. · Zbl 0902.31004
[16] Vershik, A. M.. Decreasing sequences of measurable partitions and their applications. Sov. Math. Dokl.11 (1970), 1007-1011. · Zbl 0238.28011
[17] Vershik, A. M.. The theory of decreasing sequences of measurable partitions.St. Petersburg Math. J.6(4) (1994), 1-68. · Zbl 0853.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.