×

Optimal boundary discretization by variational data assimilation. (English) Zbl 1456.76102

Summary: A variational data assimilation technique applied to the identification of the optimal discretization of interpolation operators and derivatives in the nodes adjacent to the boundary of the domain is discussed in frames of the linear shallow water model. The advantage of controlling the discretization of operators near the boundary rather than boundary conditions is shown. Assimilating data that have been produced by the same model on a finer grid, in a model on a coarse grid, we have shown that optimal discretization allows us to correct such errors of the numerical scheme as under-resolved boundary layer and wrong wave velocity.

MSC:

76M99 Basic methods in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

References:

[1] Lorenz, Deterministic non periodic flow, Journal of the Atmospheric Sciences 20 pp 130– (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2] Lions, Contrôle optimal de systèmes gouvernés pas des équations aux dérivées parielles (1968)
[3] Marchuk, Formulation of theory of perturbations for complicated models, Applied Mathematics and Optimization 2 pp 1– (1975) · Zbl 0324.65053 · doi:10.1007/BF01458193
[4] Le Dimet FX A general formalism of variational analysis 1982
[5] Le Dimet, Variational algorithm for analysis and assimilation of meteorological observations. Theoretical aspects, Tellus 38A pp 97– (1986) · doi:10.1111/j.1600-0870.1986.tb00459.x
[6] Verron, The no-slip condition and separation of western boundary currents, Journal of the Physical Oceanography 26 (9) pp 1938– (1996) · doi:10.1175/1520-0485(1996)026<1938:TNSCAS>2.0.CO;2
[7] Adcroft, How slippery are piecewise-constant coastlines in numerical ocean models?, Tellus 50A pp 95– (1998) · doi:10.1034/j.1600-0870.1998.00007.x
[8] Holland, Baroclinic and topographic influences on the transport in western boundary currents, Geophysical Fluid Dynamics 4 pp 187– (1973) · doi:10.1080/03091927208236095
[9] Eby, Sensitivity of a large-scale ocean model to a parametrisation of topographic stress, Journal of the Physical Oceanography 24 pp 2577– (1994) · doi:10.1175/1520-0485(1994)024<2577:SOALSO>2.0.CO;2
[10] Losch, Adjoint sensitivity of an ocean general circulation model to bottom topography, Journal of the Physical Oceanography 37 (2) pp 377– (2007) · doi:10.1175/JPO3017.1
[11] Bryan, Sensitivity of the tropical atlantic circulation to specification of wind stress climatology, Journal of Geophysical Research 100 pp 24729– (1995) · doi:10.1029/95JC02499
[12] Milliff, Ocean general circulation model sensitivity to forcing from scatterometer winds, Journal of Geophysical Research Oceans 104 (C5) pp 11337– (1998) · doi:10.1029/1998JC900045
[13] Bryan, Parameter sensitivity of primitive equation ocean general circulation models, Journal of the Physical Oceanography 17 pp 970– (1987) · doi:10.1175/1520-0485(1987)017<0970:PSOPEO>2.0.CO;2
[14] Losch, How sensitive are coarse general circulation models to fundamental approximations in the equations of motion?, Journal of the Physical Oceanography 34 (1) pp 306– (2004) · doi:10.1175/1520-0485(2004)034<0306:HSACGC>2.0.CO;2
[15] Losch, Bottom topography as a control variable in an ocean model, Journal of Atmospheric and Oceanic Technology 20 pp 1685– (2003) · doi:10.1175/1520-0426(2003)020<1685:BTAACV>2.0.CO;2
[16] Heemink, Inverse 3d shallow water flow modelling of the continental shelf, Continental Shelf Research 22 pp 465– (2002) · doi:10.1016/S0278-4343(01)00071-1
[17] Kazantsev, Identification of optimal topography by variational data assimilation, Journal of Physical Mathematics 1 pp 123– (2009) · Zbl 1264.86002 · doi:10.4303/jpm/S090702
[18] Shulman, Local data assimilation in specification of open boundary conditions, Journal of Atmospheric and Oceanic Technology 14 pp 1409– (1997) · doi:10.1175/1520-0426(1997)014<1409:LDAISO>2.0.CO;2
[19] Shulman, Optimized boundary conditions and data assimilation with application to the m2 tide in the yellow sea, Journal of Atmospheric and Oceanic Technology 15 (4) pp 1066– (1998) · doi:10.1175/1520-0426(1998)015<1066:OBCADA>2.0.CO;2
[20] Taillandier, Controlling boundary conditions with a four-dimensional variational data-assimilation method in a non-stratified open coastal model, Ocean Dynamics 54 (2) pp 284– (2004) · doi:10.1007/s10236-003-0068-1
[21] ten Brummelhuis, Identification of shallow sea models, International Journal for Numerical Methods in Fluids 17 pp 637– (1993) · Zbl 0793.76066 · doi:10.1002/fld.1650170802
[22] Chen, Estimation of two-sided boundary conditions for two dimensional inverse heat conduction problems, International Journal of Heat and Mass Transfer 45 pp 15– (2002) · Zbl 0986.80005 · doi:10.1016/S0017-9310(01)00138-7
[23] Gillijns, Modelling, Identification, and Control (2007)
[24] Le Dimet, Retrieval of balanced fields: an optimal control method, Tellus A 45 (5) pp 449– (1993) · doi:10.1034/j.1600-0870.1993.00009.x
[25] Kazantsev, Identification of an optimal derivatives approximation by variational data assimilation, Journal of Computational Physics 229 pp 256– (2010) · Zbl 1375.65115 · doi:10.1016/j.jcp.2009.09.018
[26] Leredde, On initial, boundary conditions and viscosity coefficient control for burgers equation, International Journal for Numerical Methods in Fluids 28 (1) pp 113– (1998) · Zbl 0928.76035 · doi:10.1002/(SICI)1097-0363(19980715)28:1<113::AID-FLD702>3.0.CO;2-1
[27] Lellouche, Boundary control on burgers equation. a numerical approach, Computers and Mathematics with Applications 28 pp 33– (1994) · Zbl 0807.76065 · doi:10.1016/0898-1221(94)00138-3
[28] Gill, Atmosphere-Ocean Dynamics (1982)
[29] Pedlosky, Geophysical Fluid Dynamics (1987) · doi:10.1007/978-1-4612-4650-3
[30] Gilbert, Some numerical experiments with variable storage quasi-newton algorithms, Mathematical Programming 45 pp 407– (1989) · Zbl 0694.90086 · doi:10.1007/BF01589113
[31] Le Provost, Wind-driven ocean circulation transition to barotropic instability, Dynamics of Atmospheres and Oceans 11 pp 175– (1987) · doi:10.1016/0377-0265(87)90005-4
[32] Munk, On the wind-driven ocean circulation, Journal of Meteorology 7 pp 3– (1950) · doi:10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2
[33] Bryan, A global ocean-atmosphere climate model. part ii. the oceanic circulation, Journal of the Physical Oceanography 5 (1) pp 30– (1975) · doi:10.1175/1520-0485(1975)005<0030:AGOACM>2.0.CO;2
[34] Griffies, Spurious diapycnal mixing associated with advection in a z-coordinate ocean model, Monthly Weather Review 128 (3) pp 538– (2000) · doi:10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.