×

Queueing system with control by admission of retrial requests depending on the number of busy servers and state of the underlying process of Markov arrival process of primary requests. (English) Zbl 07856395

Summary: A multi-server retrial queuing model is under study. Arrivals occur according to the Markov arrival process (MAP). Aiming to increase the probability of immediate access of arriving requests to service, control by the admission of retrying requests, which did not succeed to start service immediately after arrival, is supposed. A control strategy is determined by the set of the integer thresholds defined for each value of the underlying Markov chain of the MAP. Any retrying request is accepted for service if the number of busy servers is less than the threshold corresponding to the current state of the underlying Markov chain. Retrying requests are impatient and can depart from the system without receiving service. Dynamics of the system is described by the three-dimensional Markov chain. Its generator is obtained, steady-state probabilities are computed and formulas for computation of certain performance measures are given. Numerical examples are presented including illustration of a possibility to use the obtained results for managerial goals.

MSC:

90B22 Queues and service in operations research
60K25 Queueing theory (aspects of probability theory)
Full Text: DOI

References:

[1] Aguir, MS; Aksin, OZ; Karaesmen, F.; Dallery, Y., On the interaction between retrials and sizing of call centers, European Journal of Operational Research, 191, 2, 398-408, 2008 · Zbl 1149.90036 · doi:10.1016/j.ejor.2007.06.051
[2] Artalejo, JR; Gomez-Corral, A., Retrial queueing systems: A computational approach, 2008, Springer-Verla · Zbl 1161.60033 · doi:10.1007/978-3-540-78725-9
[3] Breuer, L.; Dudin, A.; Klimenok, V., A retrial \(BMAP/PH/N\) system, Queueing Systems, 40, 4, 433-457, 2002 · Zbl 1169.90335 · doi:10.1023/A:1015041602946
[4] Breuer, L.; Klimenok, V.; Birukov, A.; Dudin, A.; Krieger, UR, Modeling the access to a wireless network at hot spots, European Transactions on Telecommunications, 16, 4, 309-316, 2005 · doi:10.1002/ett.1000
[5] Chakravarthy, SR; Krishnamoorthy, A.; Raju, N.; Ramaswami, V., The batch Markovian arrival process: a review and future work, Advances in probability theory and stochastic processes, 21-29, 2001, Notable Publications Inc
[6] Chakravarthy, SR, Introduction to matrix-analytic methods in queues 1: Analytical and simulation approach-basics, 2022, London and John Wiley and Sons · Zbl 1499.90002 · doi:10.1002/9781394174201
[7] Chakravarthy, SR, Introduction to matrix-analytic methods in queues 2: Analytical and simulation approach-queues and simulation, 2022, London and John Wiley and Sons · Zbl 1499.90002 · doi:10.1002/9781394174201
[8] Dudin, A.; Klimenok, V., A retrial \(BMAP/SM/1\) system with linear repeated requests, Queueing Systems, 34, 1, 47-66, 2000 · Zbl 0942.90007 · doi:10.1023/A:1019196701000
[9] Dudin, A.; Klimenok, VI; Vishnevsky, VM, The theory of queuing systems with correlated flows, 63-392, 2020, Springer · Zbl 1428.90003 · doi:10.1007/978-3-030-32072-0
[10] Dudin, S.; Dudina, O., Retrial multi-server queuing system with PHF service time distribution as a model of a channel with unreliable transmission of information, Applied Mathematical Modelling, 65, 676-695, 2019 · Zbl 1481.90128 · doi:10.1016/j.apm.2018.09.005
[11] Dudin, S.; Dudin, A.; Kostyukova, O.; Dudina, O., Effective algorithm for computation of the stationary distribution of multi-dimensional level-dependent Markov chains with upper block-Hessenberg structure of the generator, Journal of Computational and Applied Mathematics, 366, 2020 · Zbl 1471.60143 · doi:10.1016/j.cam.2019.112425
[12] Falin, G., A survey of retrial queues, Queueing systems, 7, 2, 127-167, 1990 · Zbl 0709.60097 · doi:10.1007/BF01158472
[13] Falin, G.; Templeton, JG, Retrial queues, 1997, CRC Press · Zbl 0944.60005 · doi:10.1007/978-1-4899-2977-8
[14] Gomez-Corral, A., A bibliographical guide to the analysis of retrial queues through matrix analytic techniques, Annals of Operations Research, 141, 1, 163-191, 2006 · Zbl 1100.60049 · doi:10.1007/s10479-006-5298-4
[15] He, QM; Li, H.; Zhao, YQ, Ergodicity of the \(BMAP/PH/s/s+ K\) retrial queue with PH-retrial times, Queueing Systems, 35, 1, 323-347, 2000 · Zbl 0960.90017 · doi:10.1023/A:1019110631467
[16] Horn, RA; Johnson, CR, Matrix analysis, 2012, Cambridge University Press · doi:10.1017/CBO9781139020411
[17] Hu, K.; Allon, G.; Bassamboo, A., Understanding customer retrials in call centers: Preferences for service quality and service speed, Manufacturing & Service Operations Management, 24, 2, 1002-1020, 2022 · doi:10.1287/msom.2021.0976
[18] Jouini, O.; Koole, G.; Roubos, A., Performance indicators for call centers with impatient customers, IIE Transactions, 45, 3, 341-354, 2013 · doi:10.1080/0740817X.2012.712241
[19] Kim, CS; Klimenok, V.; Mushko, V.; Dudin, A., The \(BMAP/PH/N\) retrial queueing system operating in Markovian random environment, Computers & Operations Research, 37, 7, 1228-1237, 2010 · Zbl 1178.90097 · doi:10.1016/j.cor.2009.09.008
[20] Kim, J.; Kim, B., A survey of retrial queueing systems, Annals of Operations Research, 247, 1, 3-36, 2016 · Zbl 1357.60100 · doi:10.1007/s10479-015-2038-7
[21] Klimenok, VI; Dudin, AN, Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems, 54, 245-259, 2006 · Zbl 1107.60060 · doi:10.1007/s11134-006-0300-z
[22] Klimenok, VI; Orlovsky, DS; Dudin, AN, A \(BMAP/PH/N\) system with impatient repeated calls, Asia-Pacific Journal of Operational Research, 24, 3, 293-312, 2007 · Zbl 1141.90360 · doi:10.1142/S0217595907001310
[23] Koole, G.; Mandelbaum, A., Queueing models of call centers: An introduction, Annals of Operations Research, 113, 1, 41-59, 2002 · Zbl 1013.90090 · doi:10.1023/A:1020949626017
[24] Kulkarni, VG; Liang, HM, Retrial queues revisited, Frontiers in Queueing: Models and Applications in Science and Engineering, 7, 18-34, 1997 · Zbl 0871.60074
[25] Lucantoni, D., New results on the single server queue with a batch Markovian arrival process, Communication in Statistics-Stochastic Models, 7, 1-46, 1991 · doi:10.1080/15326349108807174
[26] Neuts, MF, Matrix-geometric solutions in stochastic models: An algorithmic approach, 1994, Courier Corporation
[27] Paluncic, F.; Alfa, AS; Maharaj, BT; Tsimba, HM, Queueing models for cognitive radio networks: A survey, IEEE Access, 6, 50801-50823, 2018 · doi:10.1109/ACCESS.2018.2867034
[28] Stepanov, S.; Stepanov, M., Estimation of the performance measures of a group of servers taking into account blocking and call repetition before and after server occupation, Mathematics, 9, 21, 2811, 2021 · doi:10.3390/math9212811
[29] Tran-Gia, P.; Mandjes, M., Modeling of customer retrial phenomenon in cellular mobile networks, IEEE Journal on Selected Areas in Communications, 15, 8, 1406-1414, 1997 · doi:10.1109/49.634781
[30] Van Do, T., A new computational algorithm for retrial queues to cellular mobile systems with guard channels, Computers & Industrial Engineering, 59, 4, 865-872, 2010 · doi:10.1016/j.cie.2010.08.017
[31] Yang, T.; Templeton, JGC, A survey on retrial queues, Queueing Systems, 2, 3, 201-233, 1987 · Zbl 0658.60124 · doi:10.1007/BF01158899
[32] Zhang, Y.; Wang, J.; Li, WW, Optimal pricing strategies in cognitive radio networks with heterogeneous secondary users and retrials, IEEE Access, 7, 30937-30950, 2019 · doi:10.1109/ACCESS.2019.2903085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.