×

Nonlinear diffusion equations driven by the \(p(\cdot)\)-Laplacian. (English) Zbl 1264.35136

The authors considered the following initial-boundary value problem: \[ \partial_tu=\nabla\cdot(|\nabla\phi(x)|^{p(x)-2}\nabla\phi(x))+f,\qquad\text{in }\Omega\times (0,\infty), \]
\[ u=0,\qquad\text{on }\partial\Omega\times (0,\infty), \]
\[ u(\cdot,0)=u_0,\qquad\text{in }\Omega, \] where \(\Omega\subset{\mathbb R}^N\) is a bounded domain with smooth boundary \(\partial\Omega\), \(f\) and \(u_0\) are given functions.
The authors investigated the asymptotic behaviors of the solutions of the problem as \(t\rightarrow 0\) when \(f\equiv0\), and also found out the limiting behavior of the solutions as \(p_n(\cdot)\rightarrow\infty\).

MSC:

35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35K55 Nonlinear parabolic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35K20 Initial-boundary value problems for second-order parabolic equations
Full Text: DOI

References:

[1] Acerbi E., Mingione G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156, 121-140 (2001) · Zbl 0984.49020 · doi:10.1007/s002050100117
[2] Acerbi E., Mingione G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213-259 (2002) · Zbl 1038.76058 · doi:10.1007/s00205-002-0208-7
[3] Acerbi E., Mingione G., Seregin G.A.: Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 25-60 (2004) · Zbl 1052.76004
[4] Akagi G.: Convergence of functionals and its applications to parabolic equations. Abstr. Appl. Anal. 2004, 907-933 (2004) · Zbl 1067.35015 · doi:10.1155/S1085337504403030
[5] Akagi, G., Matsuura, K.: Well-posedness and large-time behaviors of solutions for a parabolic equation involving p(x)-Laplacian. “The Eighth International Conference on Dynamical Systems and Differential Equations,” a supplement volume of Discrete and Continuous Dynamical Systems, pp.22-31 (2011) · Zbl 1306.35060
[6] Akagi G., Ôtani M.: Time-dependent constraint problems arising from macroscopic critical-state models for type-II superconductivity and their approximations. Adv. Math. Sci. Appl. 14, 683-712 (2004) · Zbl 1088.35085
[7] Antontsev, S., Shmarev, S.: Extinction of solutions of parabolic equations with variable anisotropic nonlinearities. Tr. Mat. Inst. Steklova 261. Differ. Uravn. i Din. Sist., pp. 16-25 (2008) · Zbl 1235.35172
[8] Antontsev S., Shmarev S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Mat. 53, 355-399 (2009) · Zbl 1191.35152
[9] Antontsev S., Shmarev S.: Vanishing solutions of anisotropic parabolic equations with variable nonlinearity. J. Math. Anal. Appl. 361, 371-391 (2010) · Zbl 1183.35177 · doi:10.1016/j.jmaa.2009.07.019
[10] Antontsev S., Shmarev S.: Blow-up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl. Math. 234, 2633-2645 (2010) · Zbl 1196.35057 · doi:10.1016/j.cam.2010.01.026
[11] Aronsson G., Evans L.C., Wu Y.: Fast/slow diffusion and growing sandpiles. J. Differ. Equ. 131, 304-335 (1996) · Zbl 0864.35057 · doi:10.1006/jdeq.1996.0166
[12] Attouch, H.: Variational Convergence for Functions and Operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston (1984) · Zbl 0561.49012
[13] Barrett J.W., Prigozhin L.: Bean’s critical-state model as the p → ∞ limit of an evolutionary p-Laplacian equation. Nonlinear Anal. 42, 977-993 (2000) · Zbl 1170.82436 · doi:10.1016/S0362-546X(99)00147-9
[14] Berryman J.G., Holland C.J.: Stability of the separable solution for fast diffusion. Arch. Ration. Mech. Anal. 74, 379-388 (1980) · Zbl 0458.35046 · doi:10.1007/BF00249681
[15] Bendahmane M., Wittbold P., Zimmermann A.: Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1-data. J. Differ. Equ. 249, 1483-1515 (2010) · Zbl 1231.35106 · doi:10.1016/j.jde.2010.05.011
[16] Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. Math Studies, vol.5. North-Holland, Amsterdam (1973) · Zbl 0252.47055
[17] Chen Y., Levine S., Rao M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522
[18] DiBenedetto, E.: Degenerate Parabolic Equations. Universitext, Springer-Verlag, New York (1993) · Zbl 0794.35090 · doi:10.1007/978-1-4612-0895-2
[19] Diening L., Ettwein F., Růžička M.: C1,α-regularity for electrorheological fluids in two dimensions. Nonlinear Differ. Equ. Appl. 14, 207-217 (2007) · Zbl 1132.76301 · doi:10.1007/s00030-007-5026-z
[20] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017., Springer, Heidelberg (2011) · Zbl 1222.46002
[21] Ettwein F., Růžička M.: Existence of local strong solutions for motions of electrorheological fluids in three dimensions. Comput. Math. Appl. 53, 595-604 (2007) · Zbl 1122.76092 · doi:10.1016/j.camwa.2006.02.032
[22] Edmunds D.E., Rákosník J.: Sobolev embeddings with variable exponent. Studia Math. 143, 267-293 (2000) · Zbl 0974.46040
[23] Edmunds D.E., Rákosník J.: Sobolev embeddings with variable exponent II. Math. Nachr. 246/247, 53-67 (2002) · Zbl 1030.46033 · doi:10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T
[24] Fan X., Shen J., Zhao D.: Sobolev embedding theorems for spaces Wk,p(x)(Ω). J. Math. Anal. Appl. 262, 749-760 (2001) · Zbl 0995.46023 · doi:10.1006/jmaa.2001.7618
[25] Fan X., Zhao D.: On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 263, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[26] Fan X., Zhao Y., Zhao D.: Compact imbedding theorems with symmetry of Strauss-Lions type for the space W1,p(x)(Ω). J. Math. Anal. Appl. 255, 333-348 (2001) · Zbl 0988.46025 · doi:10.1006/jmaa.2000.7266
[27] Fu Y., Pan N.: Existence of solutions for nonlinear parabolic problem with p(x)-growth. J. Math. Anal. Appl. 362, 313-326 (2010) · Zbl 1182.35144 · doi:10.1016/j.jmaa.2009.08.038
[28] Harjulehto P., Hästö P., Lê Ú.-V., Nuortio M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551-4574 (2010) · Zbl 1188.35072 · doi:10.1016/j.na.2010.02.033
[29] Kováčik O., Rákosník J.: On spaces Lp(x) and Wk,p(x). Czechoslovak Math. J. 41, 592-618 (1991) · Zbl 0784.46029
[30] Manfredi J.J., Rossi J.D., Urbano J.M.: p(x)-harmonic functions with unbounded exponent in a subdomain. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2581-2595 (2009) · Zbl 1180.35242 · doi:10.1016/j.anihpc.2009.09.008
[31] Manfredi J.J., Rossi J.D., Urbano J.M.: Limits as p(x)→∞ of p(x)-harmonic functions. Nonlinear Anal. 72, 309-315 (2010) · Zbl 1181.35118 · doi:10.1016/j.na.2009.06.054
[32] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983) · Zbl 0557.46020
[33] Qi Y.-W.: The degeneracy of a fast-diffusion equation and stability. SIAM J. Math. Anal. 27, 476-485 (1996) · Zbl 0855.35007 · doi:10.1137/S0036141093260021
[34] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748 Springer, Berlin (2000) · Zbl 0962.76001
[35] Samko S.: On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integr. Transforms Spec. Funct. 16, 461-482 (2005) · Zbl 1069.47056 · doi:10.1080/10652460412331320322
[36] Sanchón M., Urbano J.M.: Entropy solutions for the p(x)-Laplace equation. Trans. Am. Math. Soc. 361, 6387-6405 (2009) · Zbl 1181.35121 · doi:10.1090/S0002-9947-09-04399-2
[37] Urbano J.M., Vorotnikov D.: On the well-posedness of a two-phase minimization problem. J. Math. Anal. Appl. 378, 159-168 (2011) · Zbl 1211.35126 · doi:10.1016/j.jmaa.2011.01.017
[38] Zhang C., Zhou S.: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data. J. Differ. Equ. 248, 1376-1400 (2010) · Zbl 1195.35097 · doi:10.1016/j.jde.2009.11.024
[39] Zhikov V.V.: On the technique for passing to the limit in nonlinear elliptic equations. Funct. Anal. Appl. 43, 96-112 (2009) · Zbl 1271.35033 · doi:10.1007/s10688-009-0014-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.