×

Determinants of pseudo-Laplacians and \(\zeta^{(\mathrm{reg})}(1)\) for spinor bundles over Riemann surfaces. (English) Zbl 07919180

Summary: Let \(P\) be a point of a compact Riemann surface \(X\). We study self-adjoint extensions of the Dolbeault Laplacians in hermitian line bundles \(L\) over \(X\) initially defined on sections with compact supports in \(X \setminus \{P\}\). We define the \(\zeta\)-regularized determinants for these operators and derive comparison formulas for them. We introduce the notion of the Robin mass of \(L\). This quantity enters the comparison formulas for determinants and is related to the regularized \(\zeta (1)\) for the Dolbeault Laplacian. For spinor bundles of even characteristic, we find an explicit expression for the Robin mass. In addition, we propose an explicit formula for the Robin mass in the scalar case. Using this formula, we describe the evolution of the regularized \(\zeta (1)\) for scalar Laplacian under the Ricci flow. As a byproduct, we find an alternative proof for the Morpurgo result that the round metric minimizes the regularized \(\zeta (1)\) for surfaces of genus zero.

MSC:

30F10 Compact Riemann surfaces and uniformization
32L05 Holomorphic bundles and generalizations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] Aissiou, T.; Hillairet, L.; Kokotov, A., Determinants of pseudo-laplacians, Math. Res. Lett., 19, 1297-1308, 2012 · Zbl 1293.58014 · doi:10.4310/MRL.2012.v19.n6.a10
[2] Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. Theoretical and Mathematical Physics, p. 452. Springer, Berlin (1988) · Zbl 0679.46057
[3] Berezin, FA; Faddeev, LD, Remark on the Schrëdinger equation with singular potential, Dokl. Akad. Nauk SSSR, 137, 5, 1011-1014, 1961 · Zbl 0117.06601
[4] Birman, M. Sh., Solomyak, M.: Spectral Theory of Differential Operators: M. Sh. Birman 80th Anniversary Collection. American Mathematical Society Translations-Series 2, Advances in the Mathematical Sciences, Vol. 225 (2008), 299 pp · Zbl 1152.47002
[5] Bost, JB; Nelson, P., Spin-(1/2) bosonization on compact surfaces, Phys. Rev. Lett., 57, 7, 795-798, 1986 · doi:10.1103/PhysRevLett.57.795
[6] Chow, B., The Ricci flow on the 2-sphere, J. Differ. Geom., 33, 2, 325-334, 1991 · Zbl 0734.53033 · doi:10.4310/jdg/1214446319
[7] de Verdière, YC, Pseudo-laplaciens. I, Annales de l’institut Fourier, 32, 3, 275-286, 1982 · Zbl 0489.58034 · doi:10.5802/aif.890
[8] Fay, J., Kernel Functions, Analytic Torsion, and Moduli Spaces, 123, 1992, Providence: Memoirs of the AMS, Providence · Zbl 0777.32011
[9] Fermi, E., Sul moto dei neutroni nelle sostanze idrogenate. (On the Motion of Neutrons in Hydrogenous Substances), Ric. Scient., 7, 2, 13-52, 1936 · Zbl 0015.09002
[10] Griffiths, P.; Harris, J., Principles of Algebraic Geometry, 813, 1994, New York: Wiley, New York · Zbl 0836.14001 · doi:10.1002/9781118032527
[11] Hamilton, RS, The Ricci flow on surfaces, Contemp. Math., 71, 237-261, 1988 · Zbl 0663.53031 · doi:10.1090/conm/071/954419
[12] Kirsten, K.; Loya, P.; Park, J., The very unusual properties of the resolvent, heat kernel, and zeta-function for the operator \(-\frac{d^2}{dr^2}-1/(4r^2)\)., J. Math. Phys., 8, 47, 2006 · Zbl 1111.58025
[13] Morpurgo, C., Zeta functions on \(S^2\), Contemp. Math., 201, 213-225, 1997 · Zbl 0867.58060 · doi:10.1090/conm/201/02611
[14] Nevanlinna, R., Uniformisierung, 1967, Berlin: Grundlehren der mathematischen Wissenschaften. Springer, Berlin · Zbl 0152.27401 · doi:10.1007/978-3-642-88561-7
[15] Okikiolu, K., A negative mass theorem for surfaces of positive genus, Commun. Math. Phys., 290, 1025-1031, 2009 · Zbl 1184.53046 · doi:10.1007/s00220-008-0722-z
[16] Sěba, P., A wave chaos in singular quantum billiard, Phys. Rev. Lett., 64, 16, 1855-1858, 1990 · Zbl 1050.81535 · doi:10.1103/PhysRevLett.64.1855
[17] Steiner, J., A geometrical mass and its extremal properties for metrics on \(\cal{S}^2\), Duke Math. J., 129, 1, 63-86, 2005 · Zbl 1144.53055 · doi:10.1215/S0012-7094-04-12913-6
[18] Verlinde, E.; Verlinde, H., Chiral bosonization, determinants and the string partition function, Nucl. Phys. B, 288, 357-396, 1987 · doi:10.1016/0550-3213(87)90219-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.