×

Interpretable biomanufacturing process risk and sensitivity analyses for quality-by-design and stability control. (English) Zbl 1528.90261

Summary: While biomanufacturing plays a significant role in supporting the economy and ensuring public health, it faces critical challenges, including complexity, high variability, lengthy lead time, and very limited process data, especially for personalized new cell and gene biotherapeutics. Driven by these challenges, we propose an interpretable semantic bioprocess probabilistic knowledge graph and develop a game theory based risk and sensitivity analyses for production process to facilitate quality-by-design and stability control. Specifically, by exploring the causal relationships and interactions of critical process parameters and product quality attributes, we create a Bayesian network based probabilistic knowledge graph characterizing the complex causal interdependencies of all factors. Then, we introduce a Shapley value based sensitivity analysis, which can correctly quantify the variation contribution from each input factor on the outputs (i.e., productivity, product quality). Since the bioprocess model coefficients are learned from limited process observations, we derive the Bayesian posterior distribution to quantify model uncertainty and further develop the Shapley value based sensitivity analysis to evaluate the impact of estimation uncertainty from each set of model coefficients. Therefore, the proposed bioprocess risk and sensitivity analyses can identify the bottlenecks, guide the reliable process specifications and the most informative data collection, and improve production stability.
{© 2021 Wiley Periodicals LLC.}

MSC:

90C31 Sensitivity, stability, parametric optimization
90B30 Production models
91B05 Risk models (general)
91A12 Cooperative games

Software:

BayesDA; shap

References:

[1] Ayech, N., Chakour, C., & HARKAT, M.‐F. (2012). New adaptive moving window pca for process monitoring. IFAC Proceedings Volumes, 45(20), 606-611.
[2] Borchert, D., Suarez‐Zuluaga, D. A., Sagmeister, P., Thomassen, Y. E., & Herwig, C. (2019). Comparison of data science workflows for root cause analysis of bioprocesses. Bioprocess and Biosystems Engineering, 42(2), 245-256.
[3] Borgonovo, E., & Plischke, E. (2016). Sensitivity analysis: A review of recent advances. European Journal of Operational Research, 248(3), 869-887. · Zbl 1346.90771
[4] Castillo, E., Gutiérrez, J. M., & Hadi, A. S. (1997). Sensitivity analysis in discrete bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 27(4), 412-423.
[5] Castro, J., Gómez, D., & Tejada, J. (2009). Polynomial calculation of the shapley value based on sampling. Computers & Operations Research, 36(5), 1726-1730. · Zbl 1177.91021
[6] Coleman, M. C., & Block, D. E. (2006). Retrospective optimization of time‐dependent fermentation control strategies using time‐independent historical data. Biotechnology and Bioengineering, 95(3), 412-423.
[7] De Lira, L. D. F. B., De Vasconcelos, F. V. C., Pereira, C. F., Paim, A. P. S., Stragevitch, L., & Pimentel, M. F. (2010). Prediction of properties of diesel/biodiesel blends by infrared spectroscopy and multivariate calibration. Fuel, 89(2), 405-409.
[8] Doran, P. M. (1995). Bioprocess engineering principles. Elsevier.
[9] Doran, P. M. (2013). Bioprocess engineering principles. Elsevier.
[10] Feng, N., Wang, H. J., & Li, M. (2014). A security risk analysis model for information systems: Causal relationships of risk factors and vulnerability propagation analysis. Information Sciences, 256, 57-73.
[11] Fleischhacker, A. J., & Zhao, Y. (2011). Planning for demand failure: A dynamic lot size model for clinical trial supply chains. European Journal of Operational Research, 211(3), 496-506. · Zbl 1237.90072
[12] Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). Taylor and Francis Group, LLC. · Zbl 1039.62018
[13] Guideline, I. H. T. et al. (2009). Pharmaceutical development. Q8 (R2) Current Step, 4.
[14] Hassan, S. S., Farhan, M., Mangayil, R., Huttunen, H., & Aho, T. (2013). Bioprocess data mining using regularized regression and random forests. BMC Systems Biology, 7.
[15] Helton, J. C. (1993). Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliability Engineering & System Safety, 42(2-3), 327-367.
[16] Kabir, G., Tesfamariam, S., Francisque, A., & Sadiq, R. (2015). Evaluating risk of water mains failure using a bayesian belief network model. European Journal of Operational Research, 240(1), 220-234.
[17] Kaminsky, P., & Wang, Y. (2015). Analytical models for biopharmaceutical operations and supply chain management: A survery of research literature, pharmaceutical bioprocess. Pharmaceutical Bioprocess, 2, 61-73.
[18] Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. MIT Press. · Zbl 1183.68483
[19] Kulkarni, N. S. (2015). A modular approach for modeling active pharmaceutical ingredient manufacturing plant: A case study. In Proceedings of the 2015 winter simulation conference (pp. 2260-2271). IEEE Press.
[20] Kyriakopoulos, S., Ang, K. S., Lakshmanan, M., Huang, Z., Yoon, S., Gunawan, R., & Lee, D.‐Y. (2018). Kinetic modeling of mammalian cell culture bioprocessing: The quest to advance biomanufacturing. Biotechnology Journal, 13(3), 1700229.
[21] Lakhdar, K., Savery, J., Papageorgiou, L., & Farid, S. (2007). Multiobjective long‐term planning of biopharmaceutical manufacturing facilities. Biotechnology Progress, 23(6), 1383-1393.
[22] Leachman, R. C., Johnston, L., Li, S., & Shen, Z.‐J. (2014). An automated planning engine for biopharmaceutical production. European Journal of Operational Research, 238(1), 327-338.
[23] Li, Y., & Yuan, J. (2006). Prediction of key state variables using support vector machines in bioprocesses. Chemical Engineering & Technology: Industrial Chemistry—Plant Equipment—Process Engineering—Biotechnology, 29(3), 313-319.
[24] Li, Y. F., & Venkatasubramanian, V. (2018). Neural network to understand process capability and process intermediates acceptance criteria in monoclonal antibody production process. Journal of Pharmaceutical Innovation, 13(1), 36-47.
[25] Lim, A. C., Zhou, Y., Washbrook, J., Titchener‐Hooker, N. J., & Farid, S. (2004). A decisional‐support tool to model the impact of regulatory compliance activities in the biomanufacturing industry. Computers & Chemical Engineering, 28(5), 727-735.
[26] Lu, Q., Jiang, B., Gopaluni, R. B., Loewen, P. D., & Braatz, R. D. (2018). Sparse canonical variate analysis approach for process monitoring. Journal of Process Control, 71, 90-102.
[27] Lundberg, S. M., & Lee, S.‐I. (2017). A unified approach to interpreting model predictions. In Advances in neural information processing systems. NeurIPS Proceedings, (pp. 4765-4774).
[28] Martagan, T., Krishnamurthy, A., & Leland, P. (2018). Managing trade‐offs in protein manufacturing: How much to waste?Manufacturing & Service Operations Management, 22(2), 223-428.
[29] Martagan, T., Krishnamurthy, A., Leland, P. A., & Maravelias, C. T. (2017). Performance guarantees and optimal purification decisions for engineered proteins. Operations Research, 66(1), 18-41. · Zbl 1442.90104
[30] Martagan, T., Krishnamurthy, A., & Maravelias, C. T. (2016). Optimal condition‐based harvesting policies for biomanufacturing operations with failure risks. IIE Transactions, 48(5), 440-461.
[31] Moullec, M.‐L., Bouissou, M., Jankovic, M., Bocquet, J.‐C., Réquillard, F., Maas, O., & Forgeot, O. (2013). Toward system architecture generation and performances assessment under uncertainty using bayesian networks. Journal of Mechanical Design, 135(4), 041002.
[32] Ojha, R., Ghadge, A., Tiwari, M. K., & Bititci, U. S. (2018). Bayesian network modelling for supply chain risk propagation. International Journal of Production Research, 56(17), 5795-5819.
[33] Otto, R., Santagostino, A., & Schrader, U. (2014). From science to operations: Questions, choices, and strategies for success in biopharma. McKinsey & Company.
[34] Owen, A. B. (2014). Sobol’indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2(1), 245-251. · Zbl 1308.91129
[35] Pharmaceutical Current Good Manufacturing Practices (CGMPs) (2004). Guidance for industry: Pat—A framework for innovative pharmaceutical development, manufacturing, and quality assurance (Techn. rep.).
[36] Prinsloo, N. M., Engelbrecht, J. P., Mashapa, T. N., & Strauss, M. J. (2008). Acetone to mibk process optimization through multidisciplinary chemometrics and in‐line nir spectroscopy. Applied Catalysis A: General, 344(1-2), 20-29.
[37] Rabitz, H., & Aliş, Ö. F. (1999). General foundations of high‐dimensional model representations. Journal of Mathematical Chemistry, 25(2-3), 197-233. · Zbl 0957.93004
[38] Rader, R. A., & Langer, E. S. (2019). Single‐use technologies in biopharmaceutical manufacturing: A 10‐year review of trends and the future. Single‐Use Technology in Biopharmaceutical Manufacture, 14, 193-200.
[39] Rathore, A., Bhambure, R., & Ghare, V. (2010). Process analytical technology (pat) for biopharmaceutical products. Analytical and Bioanalytical Chemistry, 398(1), 137-154.
[40] Severson, K., VanAntwerp, J. G., Natarajan, V., Antoniou, C., Thömmes, J., & Braatz, R. D. (2015). Elastic net with Monte Carlo sampling for data‐based modeling in biopharmaceutical manufacturing facilities. Computers & Chemical Engineering, 80, 30-36.
[41] Shapley, L. S. (1953). A value for n‐person games. Contributions to the Theory of Games, 2(28), 307-317. · Zbl 0050.14404
[42] Sobol, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Computational Experiments, 1(4), 407-414. · Zbl 1039.65505
[43] Sokolov, M., Morbidelli, M., Butté, A., Souquet, J., & Broly, H. (2018). Sequential multivariate cell culture modeling at multiple scales supports systematic shaping of a monoclonal antibody toward a quality target. Biotechnology Journal, 13(4), 1700461.
[44] Song, E., Nelson, B. L., & Staum, J. (2016). Shapley effects for global sensitivity analysis: Theory and computation. SIAM/ASA Journal on Uncertainty Quantification, 4(1), 1060-1083. · Zbl 1403.62226
[45] Steinwandter, V., Borchert, D., & Herwig, C. (2019). Data science tools and applications on the way to pharma 4.0. Drug Discovery Today, 24(9), 1795-1805.
[46] Telenko, C., & Seepersad, C. C. (2014). Probabilistic graphical modeling of use stage energy consumption: A lightweight vehicle example. Journal of Mechanical Design, 136(10), 101403.
[47] Troyanskaya, O. G., Dolinski, K., Owen, A. B., Altman, R. B., & Botstein, D. (2003). A bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8348-8353.
[48] Van der Gaag, L. C., Renooij, S., & Coupé, V. M. (2007). Sensitivity analysis of probabilistic networks. In Advances in probabilistic graphical models (pp. 103-124). Springer. · Zbl 1117.90068
[49] Wagner, H. M. (1995). Global sensitivity analysis. Operations Research, 43(6), 948-969. · Zbl 0852.90122
[50] Walsh, G. (2013). Pharmaceutical biotechnology: Concepts and applications. John Wiley & Sons.
[51] Wang, Y., Blache, R., Zheng, P., & Xu, X. (2018). A knowledge management system to support design for additive manufacturing using bayesian networks. Journal of Mechanical Design, 140(5), 051701.
[52] Wechselberger, P., Sagmeister, P., Engelking, H., Schmidt, T., Wenger, J., & Herwig, C. (2012). Efficient feeding profile optimization for recombinant protein production using physiological information. Bioprocess and Biosystems Engineering, 35(9), 1637-1649.
[53] Zhai, Q., Yang, J., Xie, M., & Zhao, Y. (2014). Generalized moment‐independent importance measures based on minkowski distance. European Journal of Operational Research, 239(2), 449-455. · Zbl 1341.62304
[54] Zi, Z. (2011). Sensitivity analysis approaches applied to systems biology models. The Institution of Engineering and Technology, 5, 336-346.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.