×

A new model for shallow viscoelastic fluids. (English) Zbl 1383.76031

Summary: We propose a new reduced model for gravity-driven free-surface flows of shallow viscoelastic fluids. It is obtained by an asymptotic expansion of the upper-convected Maxwell model for viscoelastic fluids. The viscosity is assumed small (of order epsilon, the aspect ratio of the thin layer of fluid), but the relaxation time is kept finite. In addition to the classical layer depth and velocity in shallow models, our system describes also the evolution of two components of the stress. It has an intrinsic energy equation. The mathematical properties of the model are established, an important feature being the non-convexity of the physically relevant energy with respect to conservative variables, but the convexity with respect to the physically relevant pseudo-conservative variables. Numerical illustrations are given, based on a suitable well-balanced finite-volume discretization involving an approximate Riemann solver.

MSC:

76A20 Thin fluid films
76A05 Non-Newtonian fluids
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Ancey, C., J. Non-Newtonian Fluid Mech.142, 4 (2007), DOI: 10.1016/j.jnnfm.2006.05.005.
[2] Arnold, A.et al., Monatsh. Math.142, 35 (2004), DOI: 10.1007/s00605-004-0239-2.
[3] Audusse, E.et al., SIAM J. Sci. Comput.25, 2050 (2004), DOI: 10.1137/S1064827503431090.
[4] Barnes, H. A.; Hutton, J. F.; Walters, K. F. R. S., An Introduction to Rheology, 1989, Elsevier · Zbl 0729.76001
[5] Barrett, J. W.Boyaval, S., Math. Models Methods Appl. Sci.21, 1783 (2011), DOI: 10.1142/S0218202511005581. · Zbl 1256.35048
[6] Bayada, G.Chupin, L.Grec, B., Asympt. Anal.64, 185 (2009). · Zbl 1193.35145
[7] Bayada, G.Chupin, L.Martin, S., Quart. Appl. Math.65, 625 (2007). · Zbl 1153.76015
[8] Berthon, C.Coquel, F.Le Floch, P. G., Proc. Roy. Soc. Edinburgh: Sec. A142, 1 (2012), DOI: 10.1017/S0308210510001009.
[9] Bird, R. B., Dynamics of Polymeric Liquids, 1, 1987, John Wiley & Sons
[10] Bird, R. B., Dynamics of Polymeric Liquids, 2, 1987, John Wiley & Sons
[11] Bouchut, F.et al., C. R. Math.336, 531 (2003), DOI: 10.1016/S1631-073X(03)00117-1.
[12] Bouchut, F., Frontiers in Mathematics, 2004, Birkhäuser · Zbl 1086.65091
[13] Bouchut, F.Klingenberg, C.Waagan, K., Numer. Math.115, 647 (2010), DOI: 10.1007/s00211-010-0289-4.
[14] Bouchut, F.Morales, T., SIAM J. Numer. Anal.48, 1733 (2010), DOI: 10.1137/090758416.
[15] Bouchut, F.Westdickenberg, M., Commun. Math. Sci.2, 359 (2004), DOI: 10.4310/CMS.2004.v2.n3.a2.
[16] Boyaval, S.Lelièvre, T.Mangoubi, C., Math. Model. Numer. Anal.43, 523 (2009), DOI: 10.1051/m2an/2009008. · Zbl 1167.76018
[17] Bresch, D.et al., New Directions in Mathematical Fluid Mechanics, eds. Galdi, G. P.et al. (Birkhäuser, 2010) pp. 57-89. · Zbl 1182.35002
[18] Castro, M. J.et al., J. Comput. Phys.227, 8107 (2008), DOI: 10.1016/j.jcp.2008.05.012.
[19] Chupin, L., Methods Appl. Anal.16, 217 (2009). · Zbl 1185.35185
[20] Craster, R. V.Matar, O. K., Rev. Mod. Phys.81, 1131 (2009), DOI: 10.1103/RevModPhys.81.1131.
[21] Degond, P.Lemou, M.Picasso, M., SIAM J. Appl. Math.62, 1501 (2002). · Zbl 1047.76005
[22] Entov, M.Yarin, A. L., Adv. Sci. Engrg. Fluid Mech.18, 112 (1984).
[23] Entov, V. M.Yarin, A. L., J. Fluid Mech.140, 91 (2006), DOI: 10.1017/S0022112084000525.
[24] Fernández-Nieto, E. D.Noble, P.Vila, J.-P., J. Non-Newtonian Fluid Mech.165, 712 (2010). · Zbl 1274.76023
[25] Gallouët, T.Hérard, J.-M.Seguin, N., Comput. Fluids32, 479 (2003). · Zbl 1084.76540
[26] Gerbeau, J.-F.Perthame, B., Discr. Cont. Dynam. Syst. Ser. B1, 89 (2001). · Zbl 0997.76023
[27] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, 118, 1996, Springer · Zbl 0860.65075
[28] Joseph, D. D.Renardy, M.Saut, J. C., Arch. Rational Mech. Anal.87, 213 (1985), DOI: 10.1007/BF00250725.
[29] Joseph, D. D.Saut, J. C., J. Non-Newtonian Fluid Mech.20, 117 (1986), DOI: 10.1016/0377-0257(86)80018-0.
[30] Kalliadasis, S.Bielarz, C.Homsy, G. M., Phys. Fluids12, 1889 (2000), DOI: 10.1063/1.870438. · Zbl 1184.76262
[31] Kang, F.Chen, K. P., J. Non-Newtonian Fluid Mech.57, 243 (1995), DOI: 10.1016/0377-0257(94)01333-D.
[32] Le Meur, H., C. R. Acad. Sci. Paris Sér. I Math.320, 125 (1995). · Zbl 0831.76005
[33] Lee, Y.-J.Xu, J., Comput. Methods Appl. Mech. Engrg.195, 1180 (2006), DOI: 10.1016/j.cma.2005.04.008.
[34] T. Lelièvre, Problèmes mathématiques et numériques posés par la simulation d’écoulement de fluides polymériques, Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, 2004, available at http://cermics.enpc.fr/lelievre/rapports/these.pdf (in French).
[35] Li, X. K.et al., Appl. Math. Modell.35, 2309 (2011), DOI: 10.1016/j.apm.2010.11.003.
[36] Lozinski, A.Owens, R. G., J. Non-Newtonian Fluid Mech.112, 161 (2003), DOI: 10.1016/S0377-0257(03)00096-X.
[37] Marche, F., Eur. J. Mech.-B/Fluids26, 49 (2007), DOI: 10.1016/j.euromechflu.2006.04.007.
[38] Marche, F.et al., Int. J. Numer. Methods Fluids53, 867 (2007), DOI: 10.1002/fld.1311.
[39] Meur, H. L., J. Math. Fluid Mech.13, 481 (2011). · Zbl 1270.35368
[40] Narbona-Reina, G.Bresch, D., Numerical Mathematics and Advanced Applications 2009, eds. Kreiss, G.et al. (Springer, 2010) pp. 693-701. · Zbl 1431.76020
[41] Pasquali, M.Scriven, L. E., J. Non-Newtonian Fluid Mech.108, 363 (2002), DOI: 10.1016/S0377-0257(02)00138-6.
[42] Renardy, M., Mathematical Analysis of Viscoelastic Flows, 73, 2000, SIAM · Zbl 0956.76001
[43] Ro, J. S.Homsy, G. M., J. Non-Newtonian Fluid Mech.57, 203 (1995), DOI: 10.1016/0377-0257(94)01329-G.
[44] Spaid, M. A.Homsy, G. M., J. Non-Newtonian Fluid Mech.55, 249 (1994), DOI: 10.1016/0377-0257(94)80073-1.
[45] Synolakis, C. E., J. Fluid Mech.185, 523 (1987), DOI: 10.1017/S002211208700329X.
[46] Thacker, W. C., J. Fluid Mech.107, 499 (1981), DOI: 10.1017/S0022112081001882.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.