×

Mean-field avalanche size exponent for sandpiles on Galton-Watson trees. (English) Zbl 1434.60297

Summary: We show that in abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than \(t\) topplings decays as \(t^{-1/2}\). We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of B. Morris [ibid. 125, No. 2, 259–265 (2003; Zbl 1031.60035)], that was previously used by R. Lyons et al. [Electron. J. Probab. 13, 1702–1725 (2008; Zbl 1191.60016)] to study uniform spanning forests on \({\mathbb{Z}^d}\), \(d\ge 3\), and other transient graphs.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics

References:

[1] Aldous, DJ; Lyons, R., Processes on unimodular random networks, Electron. J. Probab., 12, 1454-1508 (2007) · Zbl 1131.60003 · doi:10.1214/EJP.v12-463
[2] Athreya, SR; Járai, AA, Infinite volume limit for the stationary distribution of abelian sandpile models, Commun. Math. Phys., 249, 197-213 (2004) · Zbl 1085.82005 · doi:10.1007/s00220-004-1080-0
[3] Bak, P.; Tang, C.; Wiesenfeld, K., Self-organized criticality, Phys. Rev. A, 38, 364-374 (1988) · Zbl 1230.37103 · doi:10.1103/PhysRevA.38.364
[4] Beggs, JM; Plenz, D., Neuronal avalanches in neocortical circuits, J. Neurosci., 23, 11167-11177 (2003) · doi:10.1523/JNEUROSCI.23-35-11167.2003
[5] Bhupatiraju, S., Hanson, J., Járai, A.A.: Inequalities for critical exponents in \(d\)-dimensional sandpiles. Electron. J. Probab. 22(85) (2017). 10.1214/17-EJP111 · Zbl 1386.60318
[6] Chen, D.; Peres, Y., Anchored expansion, percolation and speed, Ann. Prob., 32, 2978-2995 (2004) · Zbl 1069.60093 · doi:10.1214/009117904000000586
[7] Cori, R.; Le Borgne, Y., The sandpile model and Tutte polynomials, Adv. Appl. Math., 30, 1-2, 44-52 (2003) · Zbl 1030.05058 · doi:10.1016/S0196-8858(02)00524-9
[8] Dhar, D., Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., 64, 1613-1616 (1990) · Zbl 0943.82553 · doi:10.1103/PhysRevLett.64.1613
[9] Dhar, D., Theoretical studies of self-organized criticality, Phys. A, 369, 29-70 (2006) · doi:10.1016/j.physa.2006.04.004
[10] Dhar, D.; Majumdar, SN, Abelian sandpile model on the Bethe lattice, J. Phys. A: Math. Gen., 23, 4333-4350 (1990) · doi:10.1088/0305-4470/23/19/018
[11] Harris, TE, The Theory of Branching Processes (1963), Berlin: Springer, Berlin · Zbl 0117.13002
[12] Holroyd, AE; Levine, L.; Mészáros, K.; Peres, Y.; Propp, J.; Wilson, DB; Sidoravicius, V.; Vares, ME, Chip-firing and rotor-routing on directed graphs, In and out of Equilibrium, 361-364 (2008), Brikhäuser: Basel, Brikhäuser · Zbl 1173.82339
[13] Hutchcroft, T., Interlacements and the wired uniform spanning forest, Ann. Probab., 46, 2, 1170-1200 (2018) · Zbl 1391.60021 · doi:10.1214/17-AOP1203
[14] Hutchcroft, T.: Universality of high-dimensional spanning forests and sandpiles. Probab. Theory Relat. Fields (to appear) · Zbl 1434.60296
[15] Ivashkevich, EV; Ktitarev, DV; Priezzhev, VB, Waves of topplings in an abelian sandpile, Phys. A, 209, 347-360 (1994) · doi:10.1016/0378-4371(94)90188-0
[16] Janowsky, SA; Laberge, CA, Exact solutions for a mean-field Abelian sandpile, J. Phys. A: Math. Gen., 26, 19, L973 (1993) · doi:10.1088/0305-4470/26/19/001
[17] Járai, AA, Sandpile models, Probab. Surv., 15, 243-306 (2018) · Zbl 1409.60144 · doi:10.1214/14-PS228
[18] Járai, AA; Redig, F., Infinite volume limit of the abelian sandpile model in dimensions \(d \ge 3\), Probab. Theory Relat. Fields, 141, 181-212 (2008) · Zbl 1135.60342 · doi:10.1007/s00440-007-0083-0
[19] Járai, AA; Redig, F.; Saada, E., Approaching criticality via the zero dissipation limit in the abelian avalanche model, J. Stat. Phys., 159, 6, 1369-1407 (2015) · Zbl 1323.82031 · doi:10.1007/s10955-015-1231-z
[20] Járai, AA; Werning, N., Minimal configurations and sandpile measures, J. Theor. Prob., 27, 1, 153-167 (2014) · Zbl 1307.60143 · doi:10.1007/s10959-012-0446-z
[21] Kirchhoff, G., Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung Galvanischer Ströme geführt wird, Ann. Phys., 148, 12, 497-508 (1847) · doi:10.1002/andp.18471481202
[22] Lyons, R.; Morris, B.; Schramm, O., Ends in uniform spanning forest, Electron. J. Probab., 13, 58, 1702-1725 (2008) · Zbl 1191.60016 · doi:10.1214/EJP.v13-566
[23] Lyons, R.; Peres, Y., Probability on Trees and Networks (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1376.05002
[24] Maes, C.; Redig, F.; Saada, E., The Abelian sandpile model on an infinite tree, Ann. Prob., 30, 4, 2081-2107 (2002) · Zbl 1013.60075 · doi:10.1214/aop/1039548382
[25] Majumdar, SN; Dhar, D., Equivalence between the Abelian sandpile model and the \(q\rightarrow 0\) limit of the Potts model, Phys. A, 185, 129-145 (1992) · doi:10.1016/0378-4371(92)90447-X
[26] Morris, B., The components of the wired spanning forest are recurrent, Probab. Theory Relat. Fields, 125, 259-265 (2003) · Zbl 1031.60035 · doi:10.1007/s00440-002-0236-0
[27] Redig, F.: Mathematical aspects of the abelian sandpile model. Les Houches lecture notes in Mathematical statistical physics., 657-729, Session XXXIII, Elsevier B. V., Amsterdam (2006) · Zbl 1411.60150
[28] Redig, F.; Ruszel, WM; Saada, E., The abelian sandpile model on a random binary tree, J. Stat. Phys., 147, 4, 653-677 (2012) · Zbl 1269.82024 · doi:10.1007/s10955-012-0498-6
[29] Redig, F.; Ruszel, WM; Saada, E., Non-criticality of the Abelian sandpile model on a random tree and related models, J. Math. Phys., 59, 6, 1-16 (2018) · Zbl 1400.82080 · doi:10.1063/1.5022128
[30] Ruelle, P., Logarithmic conformal invariance in the Abelian sandpile model, J. Phys. A: Math. Theor., 46, 494014 (2013) · Zbl 1280.81128 · doi:10.1088/1751-8113/46/49/494014
[31] Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-Eights Annual ACM Symposium on the Theory of Computing. pp. 296-303, ACM, New York (1996) · Zbl 0946.60070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.