×

Supercritical percolation on graphs of polynomial growth. (English) Zbl 07858201

Summary: We consider Bernoulli percolation on transitive graphs of polynomial growth. In the subcritical regime (\(p < p_c\)), it is well known that the connection probabilities decay exponentially fast. In the present paper, we study the supercritical phase (\(p < p_c\)) and prove the exponential decay of the truncated connection probabilities (probabilities that two points are connected by an open path, but not to infinity). This sharpness result was established by Chayes, Chayes, and Newman on \(\mathbb{Z}^d\) and uses the difficult slab result of Grimmett and Marstrand. However, the techniques used there are very specific to the hypercubic lattices and do not extend to more general geometries. In this paper, we develop new robust techniques based on the recent progress in the theory of sharp thresholds and the sprinkling method of Benjamini and Tassion. On \(\mathbb{Z}^d\), these methods can be used to produce a new proof of the slab result of Grimmett and Marstrand.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
06E30 Boolean functions
20F65 Geometric group theory

References:

[1] M. AIZENMAN and D. BARSKY, Sharpness of the phase transition in percolation models, Comm. Math. Phys. 108 (1987), no. 3, 489-526. MathSciNet: MR0874906 · Zbl 0618.60098
[2] M. AIZENMAN, H. KESTEN, and C. NEWMAN, Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation, Comm. Math. Phys. 111 (1987), no. 4, 505-531. MathSciNet: MR0901151 · Zbl 0642.60102
[3] T. ANTUNOVIĆ and I. VESELIĆ, Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs, J. Stat. Phys. 130 (2008), no. 5, 983-1009. Digital Object Identifier: 10.1007/s10955-007-9459-x Google Scholar: Lookup Link MathSciNet: MR2384072 · Zbl 1214.82028 · doi:10.1007/s10955-007-9459-x
[4] E. BABSON and I. BENJAMINI, Cut sets and normed cohomology with applications to percolation, Proc. Amer. Math. Soc. 127 (1999), no. 2, 589-597. Digital Object Identifier: 10.1090/S0002-9939-99-04995-3 Google Scholar: Lookup Link MathSciNet: MR1622785 · Zbl 0910.60075 · doi:10.1090/S0002-9939-99-04995-3
[5] H. BASS, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. (3) 25 (1972), no. 4, 603-614. Digital Object Identifier: 10.1112/plms/s3-25.4.603 Google Scholar: Lookup Link MathSciNet: MR0379672 · Zbl 0259.20045 · doi:10.1112/plms/s3-25.4.603
[6] I. BENJAMINI, G. KALAI, and O. SCHRAMM, Noise sensitivity of Boolean functions and applications to percolation, Publ. Math. lnst. Hautes Études Sci. 90 (1999), 5-43. MathSciNet: MR1813223 · Zbl 0986.60002
[7] I. BENJAMINI, A. NACHMIAS, and Y. PERES, Is the critical percolation probability local?, Probab. Theory Related Fields 149 (2011), nos. 1-2, 261-269. Digital Object Identifier: 10.1007/s00440-009-0251-5 Google Scholar: Lookup Link MathSciNet: MR2773031 · Zbl 1230.60099 · doi:10.1007/s00440-009-0251-5
[8] I. BENJAMINI and O. SCHRAMM, Percolation beyond \(\mathbb{Z}^d\), many questions and a few answers, Electron. Commun. Probab. 1 (1996), no.8, 71-82. Digital Object Identifier: 10.1214/ECP.v1-978 Google Scholar: Lookup Link MathSciNet: MR1423907 · Zbl 0890.60091 · doi:10.1214/ECP.v1-978
[9] I. BENJAMINI and V. TASSION, Homogenization via sprinkling, Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017), no. 2, 997-1005. Digital Object Identifier: 10.1214/16-AIHP746 Google Scholar: Lookup Link MathSciNet: MR3634283 · Zbl 1370.60186 · doi:10.1214/16-AIHP746
[10] B. BOLLOBÁS, The Art of Mathematics: Coffee Time in Memphis, Cambridge Univ. Press, 2006. Digital Object Identifier: 10.1017/CBO9780511816574 Google Scholar: Lookup Link MathSciNet: MR2285090 · Zbl 1238.00002 · doi:10.1017/CBO9780511816574
[11] B. BOLLOBÁS and O. RIORDAN, The critical probability for random Voronoi percolation in the plane is 1/2, Probab. Theory Related Fields, 136 (2006), no. 3, 417-468. Digital Object Identifier: 10.1007/s00440-005-0490-z Google Scholar: Lookup Link MathSciNet: MR2257131 · Zbl 1100.60054 · doi:10.1007/s00440-005-0490-z
[12] J. BOURGAIN, J. KAHN, G. KALAI, Y. KATZNELSON, and N. LINIAL, The influence of variables in product spaces, Israel J. Math. 77 (1992), nos. 1-2, 55-64. Digital Object Identifier: 10.1007/BF02808010 Google Scholar: Lookup Link MathSciNet: MR1194785 · Zbl 0771.60002 · doi:10.1007/BF02808010
[13] J. BRIEUSSEL and A. GOURNAY, Connectedness of spheres in Cayley graphs, Algebra Discrete Math. 26 (2018), no. 2, 190-246. MathSciNet: MR3909043 · Zbl 1472.20081
[14] S. BROADBENT and J. HAMMERSLEY, Percolation processes: I. Crystals and mazes, Proc. Cambridge Philos. Soc. 53 (1957), no. 3, 629-641. Digital Object Identifier: 10.1017/s0305004100032680 Google Scholar: Lookup Link MathSciNet: MR0091567 · Zbl 0091.13901 · doi:10.1017/s0305004100032680
[15] R. BURTON and M. KEANE, Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989), no. 3, 501-505. MathSciNet: MR0990777 · Zbl 0662.60113
[16] R. CERF, A lower bound on the two-arms exponent for critical percolation on the lattice, Ann. Probab. 43 (2015), no. 5, 2458-2480. Digital Object Identifier: 10.1214/14-AOP940 Google Scholar: Lookup Link MathSciNet: MR3395466 · Zbl 1356.60163 · doi:10.1214/14-AOP940
[17] J. CHAYES, L. CHAYES, and C. NEWMAN, Bernoulli percolation above threshold: An invasion percolation analysis, Ann. Probab. 15 (1987), no. 4, 1272-1287. MathSciNet: MR0905331 · Zbl 0627.60099
[18] D. CONTRERAS, S. MARTINEAU, and V. TASSION, Locality of percolation for graphs with polynomial growth, Electron. Commun. Probab. 28 (2023), 1-9. Digital Object Identifier: 10.1214/22-ecp508 Google Scholar: Lookup Link MathSciNet: MR4529920 · Zbl 1509.82064 · doi:10.1214/22-ecp508
[19] P. DE LA HARPE, Topics in Geometric Group Theory, Univ. of Chicago Press, 2000. MathSciNet: MR1786869 · Zbl 0965.20025
[20] R. DIESTEL, Graph Theory, Graduate Texts in Mathematics, 5th ed., 173, Springer, Berlin, 2017. Digital Object Identifier: 10.1007/978-3-662-53622-3 Google Scholar: Lookup Link MathSciNet: MR3644391 · Zbl 1375.05002 · doi:10.1007/978-3-662-53622-3
[21] C. DRUŢU and M. KAPOVICH, Geometric Group Theory, Amer. Math. Soc. Colloq. Publ. 63, American Mathematical Society, Providence, 2018. Digital Object Identifier: 10.1090/coll/063 Google Scholar: Lookup Link MathSciNet: MR3753580 · Zbl 1447.20001 · doi:10.1090/coll/063
[22] H. DUMINIL-COPIN, S. GOSWAMI, and A. RAOUFI, Exponential decay of truncated correlations for the Ising model in any dimension for all but the critical temperature, Comm. Math. Phys. 374 (2020), no. 2, 891-921. Digital Object Identifier: 10.1007/s00220-019-03633-y Google Scholar: Lookup Link MathSciNet: MR4072233 · Zbl 1475.82003 · doi:10.1007/s00220-019-03633-y
[23] H. DUMINIL-COPIN, S. GOSWAMI, A. RAOUFI, F. SEVERO, and A. YADIN, Existence of phase transition for percolation using the Gaussian free field, Duke Math. J. 169 (2020), no. 18, 3539-3563. Digital Object Identifier: 10.1215/00127094-2020-0036 Google Scholar: Lookup Link MathSciNet: MR4181032 · Zbl 1470.60275 · doi:10.1215/00127094-2020-0036
[24] H. DUMINIL-COPIN, S. GOSWAMI, P. RODRIGUEZ, and F. SEVERO, Equality of critical parameters for percolation of Gaussian free field level-sets, Duke Math. J. 172 (2023), no. 5, 839-913. Digital Object Identifier: 10.1215/00127094-2022-0017 Google Scholar: Lookup Link MathSciNet: MR4568695 · Zbl 1536.60093 · doi:10.1215/00127094-2022-0017
[25] H. DUMINIL-COPIN, G. KOZMA, and V. TASSION, “Upper bounds on the percolation correlation length” in In and Out of Equlibrium 3: Celebrating Vladas Sidoravicius, Progr. Probab. 77, Birkhauser, Cham, 2021, 347-369. Digital Object Identifier: 10.1007/978-3-030-60754-8_16 Google Scholar: Lookup Link MathSciNet: MR4237276 · Zbl 1469.60325 · doi:10.1007/978-3-030-60754-8_16
[26] H. DUMINIL-COPIN, A. RAOUFI, and V. TASSION, A new computation of the critical point for the planar random-cluster model with \(q \geq 1\), Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 1, 422-436. Digital Object Identifier: 10.1214/16-AIHP809 Google Scholar: Lookup Link MathSciNet: MR3765895 · Zbl 1395.82043 · doi:10.1214/16-AIHP809
[27] H. DUMINIL-COPIN and V. TASSION, A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model, Comm. Math. Phys. 343 (2016), no. 2, 725-745. Digital Object Identifier: 10.1007/s00220-015-2480-z Google Scholar: Lookup Link MathSciNet: MR3477351 · Zbl 1342.82026 · doi:10.1007/s00220-015-2480-z
[28] L. FUNAR, M. GIANNOUDOVARDI, and D. OTERA, On groups with linear sci growth, Fund. Math. 228 (2015), no. 1, 47-62. Digital Object Identifier: 10.4064/fm228-1-4 Google Scholar: Lookup Link MathSciNet: MR3291630 · Zbl 1350.20032 · doi:10.4064/fm228-1-4
[29] A. GANDOLFI, G. GRIMMETT, and L. RUSSO, On the uniqueness of the infinite cluster in the percolation model, Commun. Math. Phys. 114 (1988), no. 4, 549-552. MathSciNet: MR0929129 · Zbl 0649.60104
[30] G. GRIMMETT, Percolation, Grundlehren der Mathematischen Wissenschaften 321, 2nd ed., Springer, Berlin, 1999. Digital Object Identifier: 10.1007/978-3-662-03981-6 Google Scholar: Lookup Link MathSciNet: MR1707339 · Zbl 0926.60004 · doi:10.1007/978-3-662-03981-6
[31] G. GRIMMETT, The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften 333, Springer, Berlin, 2006. Digital Object Identifier: 10.1007/978-3-540-32891-9 Google Scholar: Lookup Link MathSciNet: MR2243761 · Zbl 1122.60087 · doi:10.1007/978-3-540-32891-9
[32] G. GRIMMETT and J. MARSTRAND, The supercritical phase of percolation is well behaved, Proc. Roy. Soc. London. Ser. A 430 (1990), no. 1879, 439-457. Digital Object Identifier: 10.1098/rspa.1990.0100 Google Scholar: Lookup Link MathSciNet: MR1068308 · Zbl 0711.60100 · doi:10.1098/rspa.1990.0100
[33] M. GROMOV, Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits), Publ. Math. l’IHÉS 53 (1981), 53-78. MathSciNet: MR0623535 · Zbl 0474.20018
[34] Y. GUIVARC’H, Croissance polynomiale et périodes des fonctions harmoniques , Bull. Soc. Math. France 101 (1973), 333-379. MathSciNet: MR0369608 · Zbl 0294.43003
[35] J. HERMON and T. HUTCHCROFT, Supercritical percolation on nonamenable graphs: Isoperimetry, analyticity, and exponential decay of the cluster size distribution, Invent. Math. 224 (2021), no. 2, 445-486. Digital Object Identifier: 10.1007/s00222-020-01011-3 Google Scholar: Lookup Link MathSciNet: MR4243018 · Zbl 1516.60057 · doi:10.1007/s00222-020-01011-3
[36] T. HUTCHCROFT, Locality of the critical probability for transitive graphs of exponential growth, Ann. Probab. 48 (2020), no. 3, 1352-1371. Digital Object Identifier: 10.1214/19-AOP1395 Google Scholar: Lookup Link MathSciNet: MR4112717 · Zbl 1506.60107 · doi:10.1214/19-AOP1395
[37] T. HUTCHCROFT and M. TOINTON, Non-triviality of the phase transition for percolation on finite transitive graphs, preprint, arXiv:2104.05607 [math.PR].
[38] J. KAHN, G. KALAI, and N. LINIAL. “The influence of variables on Boolean functions” in 29th Annual Symposium on Foundations of Computer Science (White Plains, NY, 1988), IEEE, New York, 2002, 68-80.
[39] H. KESTEN, The critical probability of bond percolation on the square lattice equals \(\frac{ 1}{ 2} \), Comm. Math. Phys. 74 (1980), no. 1, 41-59. MathSciNet: MR0575895 · Zbl 0441.60010
[40] H. KESTEN and Y. ZHANG, The probability of a large finite cluster in supercritical Bernoulli percolation, Ann. Probab. 18 (1990), no. 2, 537-555. MathSciNet: MR1055419 · Zbl 0705.60092
[41] B. KLEINER, A new proof of Gromov’s theorem on groups of polynomial growth, J. Amer. Math. Soc. 23 (2010), no. 3, 815-829. Digital Object Identifier: 10.1090/S0894-0347-09-00658-4 Google Scholar: Lookup Link MathSciNet: MR2629989 · Zbl 1246.20038 · doi:10.1090/S0894-0347-09-00658-4
[42] R. LYONS, B. MORRIS, and O. SCHRAMM, Ends in uniform spanning forests, Electron. J. Probab. 13 (2008), no. 58, 1702-1725. Digital Object Identifier: 10.1214/EJP.v13-566 Google Scholar: Lookup Link MathSciNet: MR2448128 · Zbl 1191.60016 · doi:10.1214/EJP.v13-566
[43] R. LYONS and Y. PERES, Probability on trees and networks, Cambridge Series in Statistical and Probabilistic Mathematics 42, Cambridge Univ. Press, New York, 2016. Digital Object Identifier: 10.1017/9781316672815 Google Scholar: Lookup Link MathSciNet: MR3616205 · Zbl 1376.05002 · doi:10.1017/9781316672815
[44] S. MARTINEAU and V. TASSION, Locality of percolation for Abelian Cayley graphs, Ann. Probab. 45 (2017), no. 2, 1247-1277. Digital Object Identifier: 10.1214/15-AOP1086 Google Scholar: Lookup Link MathSciNet: MR3630298 · Zbl 1388.60165 · doi:10.1214/15-AOP1086
[45] M. MENSHIKOV, Coincidence of critical points in percolation problems, Soviet Math. Dokl. 33 (1986), 856-859. MathSciNet: MR0852458 · Zbl 0615.60096
[46] G. PETE, A note on percolation on \(\mathbb{Z}^d\): isoperimetric profile via exponential cluster repulsion, Electron. Commun. Probab. 13 (2008), no. 37, 377-392. Digital Object Identifier: 10.1214/ECP.v13-1390 Google Scholar: Lookup Link MathSciNet: MR2415145 · Zbl 1191.60116 · doi:10.1214/ECP.v13-1390
[47] L. RUSSO, An approximate zero-one law, Z. Wahrsch. Verw. Gebiete, 61 (1982), no. 1, 129-139. Digital Object Identifier: 10.1007/BF00537230 Google Scholar: Lookup Link MathSciNet: MR0671248 · Zbl 0501.60043 · doi:10.1007/BF00537230
[48] F. SEVERO, Sharp phase transition for Gaussian percolation in all dimensions , Ann. H. Lebesgue 5 (2022), 987-1008. Digital Object Identifier: 10.5802/ahl.141 Google Scholar: Lookup Link MathSciNet: MR4526244 · Zbl 1515.82080 · doi:10.5802/ahl.141
[49] Y. Shalom and T. Tao, A finitary version of Gromov’s polynomial growth theorem, Geom. Funct. Anal. 20 (2010), no. 6, 1502-1547. Digital Object Identifier: 10.1007/s00039-010-0096-1 Google Scholar: Lookup Link MathSciNet: MR2739001 · Zbl 1262.20044 · doi:10.1007/s00039-010-0096-1
[50] P. SOARDI and W. WOESS, Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Z. 205 (1990), no. 3, 471-486. Digital Object Identifier: 10.1007/BF02571256 Google Scholar: Lookup Link MathSciNet: MR1082868 · Zbl 0693.43001 · doi:10.1007/BF02571256
[51] M. TALAGRAND, On Russo’s approximate zero-one law, Ann. Probab. 22 (1994), no. 3, 1576-1587. MathSciNet: MR1303654 · Zbl 0819.28002
[52] R. TESSERA and M. TOINTON, A finitary structure theorem for vertex-transitive graphs of polynomial growth, Combinatorica 41 (2021), no. 2, 263-298. Digital Object Identifier: 10.1007/s00493-020-4295-6 Google Scholar: Lookup Link MathSciNet: MR4253426 · Zbl 1474.05343 · doi:10.1007/s00493-020-4295-6
[53] Á. TIMÁR, Cutsets in infinite graphs Combin. Probab. Comput. 16 (2007), no. 1, 159-166. Digital Object Identifier: 10.1017/S0963548306007838 Google Scholar: Lookup Link MathSciNet: MR2286517 · Zbl 1170.05033 · doi:10.1017/S0963548306007838
[54] Á. TIMÁR, Boundary-connectivity via graph theory, Proc. Amer. Math. Soc. 141 (2013), no. 2, 475-480. Digital Object Identifier: 10.1090/S0002-9939-2012-11333-4 Google Scholar: Lookup Link MathSciNet: MR2996951 · Zbl 1259.05049 · doi:10.1090/S0002-9939-2012-11333-4
[55] V. TROFIMOV, Graphs with polynomial growth, Sb. Math. 51 (1985), no. 2, 405-417. MathSciNet: MR0735714 · Zbl 0565.05035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.