×

Loose Laplacian spectra of random hypergraphs. (English) Zbl 1255.05116

Summary: Let \(H = (V, E)\) be an \(r\)-uniform hypergraph with the vertex set \(V\) and the edge set \(E\). For \(1 \leq s \leq r/2\), we define a weighted graph \(G^{(s)}\) on the vertex set \(V \choose s\) as follows. Every pair of \(s\)-sets \(I\) and \(J\) is associated with a weight \(w(I, J)\), which is the number of edges in \(H\) containing \(I\) and \(J\) if \(I\cap J = \emptyset\), and 0 if \(I\cap J\neq \emptyset\). The \(s\)-th Laplacian \(\mathcal L^{(s)}\) of \(H\) is defined to be the normalized Laplacian of \(G^{(s)}\). The eigenvalues of \(\mathcal L^{(s)}\) are listed as \(\lambda^{(s)}_{0},\lambda^{(s)}_{1},\dots,\lambda^{(s)}_{{n\choose s}-1}\) in non-decreasing order.
Let \(\overline{\lambda}^{(s)}(H)=\)max\(_{i\neq 0}\{|1-\lambda^{(s)}_{i}|\}\). The parameters \(\overline{\lambda}^{(s)}(H)\) and \(\overline{\lambda}^{(s)}_1(H)\), which were introduced in our previous paper, have a number of connections to the mixing rate of high-ordered random walks, the generalized distances/diameters, and the edge expansions.
For \(0 < p < 1\), let \(H^{r}(n, p)\) be a random \(r\)-uniform hypergraph over \([n] := \{1, 2, \ldots , n\}\), where each \(r\)-set of \([n]\) has probability \(p\) to be an edge independently. For \(1 \leq s\leq r/2\), \(p(1-p)\gg \frac {\log^{4}n}{n^{r-s}}\), and \(p(1-p)\gg\frac {\log n}{n^2}\), we prove that almost surely
\[ \overline{\lambda}^{(s)}\left(H^{r}(n,p)\right) \leq {\frac {s}{n-s}+(3+o(1))\sqrt{\frac {1-p}{{n-s \choose {r-s}}p}}} \]
We also prove that the empirical distribution of the eigenvalues of \(\mathcal L^{(s)}\) for \(H^{r}(n, p)\) follows the semicircle law if \(p(1-p)\gg\frac {\log^{1/3}n}{n^{r-s}}\) and \(1-p\gg \frac {\log n}{n^{2+2r-2s}}\).

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C65 Hypergraphs
05C80 Random graphs (graph-theoretic aspects)

References:

[1] Ahlswede, Strong converse for identification via quantum channels, IEEE Trans Inform Theory 48 pp 569– (2002) · Zbl 1071.94530 · doi:10.1109/18.985947
[2] Alon, Concentration of eigenvalues of random matrices, Israel Math J 131 pp 259– (2002) · Zbl 1014.15016 · doi:10.1007/BF02785860
[3] Calderbank, Improved upper bounds concerning the Erdos-Ko-Rado Theorem, Combin, Probab Comput 1 pp 115– (1992) · Zbl 0793.05136 · doi:10.1017/S0963548300000134
[4] Chernoff, A note on an inequality involving the normal distribution, Ann Probab 9 pp 533– (1981) · Zbl 0457.60014 · doi:10.1214/aop/1176994428
[5] Chung, Diameters and eigenvalues, J Am Math Soc 2 pp 187– (1989) · Zbl 0678.05037 · doi:10.1090/S0894-0347-1989-0965008-X
[6] F. Chung The Laplacian of a hypergraph, Expanding graphs (DIMACS series) J. Friedman Am. Math. Soc. Providence, RI 1993 21 36
[7] Chung, An upper bound on the diameter of a graph from eigenvalues associated with its Laplacian, Siam J Disc Math 7 pp 443– (1994) · Zbl 0808.05072 · doi:10.1137/S0895480191217776
[8] F. Chung Spectral graph theory, CBMS Regional Conference Series in Mathematics 92 Conference Board of the Mathematical Sciences Washington, DC 1997
[9] Chung, Laplacians and the Cheeger inequality for directed graphs, Ann Combin 9 pp 1– (2005) · Zbl 1059.05070 · doi:10.1007/s00026-005-0237-z
[10] Chung, The diameter and Laplacian eigenvalues of directed graphs, Electron J Combin 13 pp N4– (2006) · Zbl 1084.05031
[11] Chung, Eigenvalues of random power law graphs, Ann Combin 7 pp 21– (2003) · Zbl 1017.05093 · doi:10.1007/s000260300002
[12] Chung, Spectra of random graphs with given expected degrees, Proc Nat Acad Sci 100 pp 6313– (2003) · Zbl 1064.05138 · doi:10.1073/pnas.0937490100
[13] Chung, On the spectra of general random graphs, Electron J Combin 18 pp 215– (2011) · Zbl 1229.05248
[14] Coja-Oghlan, On the Laplacian eigenvalues of G(n,p), Combin, Probab Comput 16 pp 923– (2007) · Zbl 1127.05062 · doi:10.1017/S0963548307008693
[15] Coja-Oghlan, The spectral gap of random graphs with given expected degrees, Electron J Combin 16 pp R138– (2009) · Zbl 1187.05048
[16] Cristofides, Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales, Random Struct Algorithms 32 pp 88– (2008) · Zbl 1130.05030 · doi:10.1002/rsa.20177
[17] Ding, Spectral distributions of adjacency and Laplacian matrices of random graphs, Ann Appl Probab 20 pp 2086– (2010) · Zbl 1231.05236 · doi:10.1214/10-AAP677
[18] Erdos, Intersection theorems for systems of finite sets, Quarter J Math, Oxford Series, series 2 pp 313– (1961) · Zbl 0100.01902 · doi:10.1093/qmath/12.1.313
[19] Feige, Spectral techniques applied to sparse random graphs, Random Struct Algorithms 27 pp 251– (2005) · Zbl 1076.05073 · doi:10.1002/rsa.20089
[20] Friedman, Proc. 21st ACM Symposium on Theory of Computing pp 587– (1989)
[21] Friedman, On the second eigenvalue and random walks in randomd-regular graphs, Combinatorica 11 pp 331– (1991) · Zbl 0760.05078 · doi:10.1007/BF01275669
[22] J. Friedman A Proof of Alon’s second eigenvalue conjectureand related problem, Memoirs of the American Mathematical Society 2008 100
[23] Füredi, The eigenvalues of random symmetric matrices, Combinatorica 1 pp 233– (1981) · Zbl 0494.15010 · doi:10.1007/BF02579329
[24] Godsil, Algebraic graph theory (2001) · doi:10.1007/978-1-4613-0163-9
[25] Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE Trans Inform Theory 57 pp 1548– (2011) · Zbl 1366.94103 · doi:10.1109/TIT.2011.2104999
[26] Hwang, Cauchy’s interlace theorem for eigenvalues of Hermitian matrices, Amer Math Monthly 111 pp 157– (2004) · Zbl 1050.15008 · doi:10.2307/4145217
[27] Katona, A simple proof of the Erdos-Chao Ko-Rado theorem, J Combin Theory, Series B 13 pp 183– (1972) · Zbl 0262.05002 · doi:10.1016/0095-8956(72)90054-8
[28] Krivelevich, The largest eigenvalue of sparse random graphs, Combin, Probab Comput 12 pp 61– (2003) · Zbl 1012.05109 · doi:10.1017/S0963548302005424
[29] Lu, Algorithms and Models for the Web Graph-8th International Workshop pp 14– (2011) · Zbl 1328.05106 · doi:10.1007/978-3-642-21286-4_2
[30] R. Oliveira http://arxiv.org/abs/0911.0600
[31] Recht, Simpler approach to matrix completion, J Mach Learn Res 12 pp 3413– (2011) · Zbl 1280.68141
[32] J. Tropp User-Friendly Tail Bounds for Sums of Random Matrices 2011
[33] Rodríguez, On the Laplacian spectrum and walk-regular hypergraphs, Linear Multilinear Algebra 51 pp 285– (2003) · Zbl 1050.05085 · doi:10.1080/0308108031000084374
[34] Rodríguez, Laplacian eigenvalues and partition problems in hypergraphs, Appl Math Lett 22 pp 916– (2009) · Zbl 1188.05093 · doi:10.1016/j.aml.2008.07.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.