×

Haas-Molnar continued fractions and metric Diophantine approximation. (English) Zbl 1397.37043

Proc. Steklov Inst. Math. 299, 157-177 (2017); translation in Tr. Mat. Inst. Steklova 299, 170-191 (2017).
For \(x \in [0,1]\), a well-known quantity \(\theta_n(x)\) measures the distance between \(x\) and the \(n\)-th convergent of its continued fraction expansion. A. Haas and D. Molnar [Trans. Am. Math. Soc. 356, No. 7, 2851–2870 (2004; Zbl 1051.11038)] introduced a family of piecewise Möbius transformations \(T_u:[0,1] \rightarrow [0,1]\) which includes the Gauss map. Those authors studied analogues of \((\theta_n(x))_{n \geq 1}\) for \(T_u\). The paper reviewed here extends results of R. Nair [New York J. Math. 3A, 117–124 (1998; Zbl 0894.11032)] from the Gauss map to \(T_u\), studying \((\theta_{k_n}(x))_{n \geq 1}\) for certain sequences \((k_n)_{n \geq 1}\). The authors’ results also generalize theorems of D. Hensley [New York J. Math. 4, 249–257 (1998; Zbl 0991.11046)] and A. Haas and D. Molnar [Pac. J. Math. 217, No. 1, 101–114 (2004; Zbl 1080.11060)].

MSC:

37E05 Dynamical systems involving maps of the interval
11A55 Continued fractions
11J54 Small fractional parts of polynomials and generalizations
Full Text: DOI

References:

[1] G. Alkauskas, “Transfer operator for the Gauss’ continued fraction map. I: Structure of the eigenvalues and trace formulas,” arXiv: 1210.4083v6 [math.NT].
[2] Babenko, K. I., On a problem of Gauss, Dokl. Akad. Nauk SSSR, 238, 1021-1024, (1978) · Zbl 0885.41020
[3] Babenko, K. I.; Jur’ev, S. P., On the discretization of a problem of Gauss, Dokl. Akad. Nauk SSSR, 240, 1273-1276, (1978) · Zbl 0416.10040
[4] Bellow, A.; Jones, R.; Rosenblatt, J., Convergence for moving averages, Ergodic Theory Dyn. Syst., 10, 43-62, (1990) · Zbl 0674.60035 · doi:10.1017/S0143385700005381
[5] Boshernitzan, M.; Kolesnik, G.; Quas, A.; Wierdl, M., Ergodic averaging sequences, J. Anal. Math., 95, 63-103, (2005) · Zbl 1100.28010 · doi:10.1007/BF02791497
[6] Bosma, W.; Jager, H.; Wiedijk, F., Some metrical observations on the approximation by continued fractions, Indag. Math., 45, 281-299, (1983) · Zbl 0519.10043 · doi:10.1016/1385-7258(83)90063-X
[7] Bourgain, J., On the maximal ergodic theorem for certain subsets of the integers, Isr. J. Math., 61, 39-72, (1988) · Zbl 0642.28010 · doi:10.1007/BF02776301
[8] Bourgain, J., Pointwise ergodic theorems for arithmetic sets, Publ. Math., Inst. Hautes Étud. Sci., 69, 5-45, (1989) · Zbl 0705.28008 · doi:10.1007/BF02698838
[9] Burton, R. M.; Kraaikamp, C.; Schmidt, T. A., Natural extensions for the Rosen fractions, Trans. Am. Math. Soc., 352, 1277-1298, (2000) · Zbl 0938.11036 · doi:10.1090/S0002-9947-99-02442-3
[10] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic Theory (Springer, New York, 1982), Grundl. Math. Wiss. 245. · Zbl 0493.28007 · doi:10.1007/978-1-4615-6927-5
[11] Dajani, K.; Kraaikamp, C.; Wekken, N., Ergodicity of \(N\)-continued fraction expansions, J. Number Theory, 133, 3183-3204, (2013) · Zbl 1325.11066 · doi:10.1016/j.jnt.2013.02.017
[12] Gröchenig, K.; Haas, A., Backward continued fractions, Hecke groups and invariant measures for transformations of the interval, Ergodic Theory Dyn. Syst., 16, 1241-1274, (1996) · Zbl 0884.58040 · doi:10.1017/S0143385700010014
[13] Haas, A., Invariant measures and natural extensions, Can. Math. Bull., 45, 97-108, (2002) · Zbl 1044.37002 · doi:10.4153/CMB-2002-011-4
[14] Haas, A.; Molnar, D., Metrical Diophantine approximation for continued fraction like maps of the interval, Trans. Am. Math. Soc., 356, 2851-2870, (2004) · Zbl 1051.11038 · doi:10.1090/S0002-9947-03-03371-3
[15] Haas, A.; Molnar, D., The distribution of jager pairs for continued fraction like mappings of the interval, Pac. J. Math, 217, 101-114, (2004) · Zbl 1080.11060 · doi:10.2140/pjm.2004.217.101
[16] Hensley, D., Continued fraction Cantor sets, Hausdorff dimension, and functional analysis, J. Number Theory, 40, 336-358, (1992) · Zbl 0745.28005 · doi:10.1016/0022-314X(92)90006-B
[17] Hensley, D., Metric Diophantine approximation and probability, New York J. Math., 4, 249-257, (1998) · Zbl 0991.11046
[18] Ionescu Tulcea, C. T.; Marinescu, G., Théorie ergodique pour des classes d’opérations non complètement continues, Ann. Math., Ser. 2, 52, 140-147, (1950) · Zbl 0040.06502 · doi:10.2307/1969514
[19] S. Lang, Introduction to Diophantine Approximations (Addison-Wesley, Reading, MA, 1966), Addison-Wesley Ser. Math. · Zbl 0144.04005
[20] D. H. Mayer, The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics (Springer, Berlin, 1980), Lect. Notes Phys. 123. · Zbl 0454.60079
[21] Mayer, D.; Roepstorff, G., On the relaxation time of gauss’s continued-fraction map. I: the Hilbert space approach (koopmanism), J. Stat. Phys., 47, 149-171, (1987) · Zbl 0658.10057 · doi:10.1007/BF01009039
[22] Mayer, D.; Roepstorff, G., On the relaxation time of gauss’ continued-fraction map. II: the Banach space approach (transfer operator method), J. Stat. Phys., 50, 331-344, (1988) · Zbl 0658.10058 · doi:10.1007/BF01022997
[23] Nair, R., On polynomials in primes and J. bourgain’s circle method approach to ergodic theorems. II, Stud. Math., 105, 207-233, (1993) · Zbl 0871.11051 · doi:10.4064/sm-105-3-207-233
[24] Nair, R., On the metrical theory of continued fractions, Proc. Am. Math. Soc., 120, 1041-1046, (1994) · Zbl 0796.11031 · doi:10.1090/S0002-9939-1994-1176073-5
[25] Nair, R., On uniformly distributed sequences of integers and Poincaré recurrence. II, Indag. Math., New Ser., 9, 405-415, (1998) · Zbl 0922.11065 · doi:10.1016/S0019-3577(98)80008-6
[26] Nair, R., On metric Diophantine approximation and subsequence ergodic theory, New York J. Math, 3A, 117-124, (1998) · Zbl 0894.11032
[27] Nair, R.; Weber, M., On random perturbation of some intersective sets, Indag. Math., New Ser., 15, 373-381, (2004) · Zbl 1065.37004 · doi:10.1016/S0019-3577(04)80006-5
[28] Nakada, H., Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4, 399-426, (1981) · Zbl 0479.10029 · doi:10.3836/tjm/1270215165
[29] Rudolfer, S. M.; Wilkinson, K. M., A number-theoretic class of weak Bernoulli transformations, Math. Syst. Theory, 7, 14-24, (1973) · Zbl 0258.10031 · doi:10.1007/BF01824802
[30] Ruelle, D., Dynamical zeta functions and transfer operators, Notices Am. Math. Soc., 49, 887-895, (2002) · Zbl 1126.37305
[31] D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd ed. (Cambridge Univ. Press, Cambridge, 2004). · Zbl 1062.82001 · doi:10.1017/CBO9780511617546
[32] A. Tempelman, Ergodic Theorems for Group Actions: Informational and Thermodynamical Aspects (Kluwer, Dordrecht, 1992), Math. Appl. 78. · Zbl 0753.28014 · doi:10.1007/978-94-017-1460-0
[33] L. Vepštas, “The Gauss-Kuzmin-Wirsing operator,” http://67.198.37.16/math/gkw.pdf
[34] P. Walters, An Introduction to Ergodic Theory (Springer, New York, 1981). · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.